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1 Introduction
Since the first introduction by Pardoux and Peng [] in , the theory of nonlinear back-
ward stochastic differential equations (BSDEs) driven by a Brownian motion has been in-
tensively researched by many researchers and has achieved abundant theoretical results.
Now this theory is a powerful tool in stochastic analysis. It also has many important appli-
cations, namely in stochastic control, stochastic differential games, finance, and the theory
of partial differential equations (PDEs).

In the classic BSDE theory, we consider a Brownian motion as the driver, but a Brownian
motion is a kind of very idealized stochastic model, which limits greatly the applications
of the classic BSDEs. There are many results about BSDEs associated with jump process.
Tang and Li [] first discussed BSDEs driven by a Brownian motion and Poisson process;
Nualart and Schoutens [] considered BSDEs driven by a Brownian motion and Lévy pro-
cess. Furthermore, there are also results where the Brownian motion in the diffusion term
of the BSDE is replaced by another process. For example, Cohen and Elliott [] studied
BSDEs driven by a continuous-time finite-state Markov chain. After that, many results,
such as a comparison theorem about this kind of BSDEs, nonlinear expected results [, ],
and so on, appeared.

Along with the rapid development of the BSDE theory, the theory of fully coupled
forward-backward stochastic differential equations (FBSDEs), closely related to BSDEs,
has been developed rapidly. Fully coupled FBSDEs with Brownian motion can be encoun-
tered in the optimization problem when applying stochastic maximum principle (see [])
and in mathematical finance when considering a large investor in security market (see []).
Such FBSDEs are also used in the potential theory (see []). As we know now, to get the
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existence and uniqueness results of fully coupled FBSDEs solutions, there are mainly three
methods: the method of contraction mappings [, ], the four-step scheme [], and the
method of continuation [, ]. For more details on fully coupled FBSDEs, we refer to
Yong [], Ma et al. [], or Briand and Hu [] and the references therein.

In this paper, we study fully coupled FBSDEs driven by a martingale generated by a
continuous-time finite-state Markov chain. Inspired by Peng and Wu [], we introduce
an m × n full-rank matrix G to overcome the problem caused by the different dimensions
of SDE and BSDE. Using the method of continuation, the Itô product rule of semimartin-
gales, and the fixed point principle, based on the theory of BSDEs driven by a continuous-
time finite-state Markov chain, we obtain existence and uniqueness results of the FBSDEs
on a Markov chain. It is worth pointing out that due to the property of the martingale gen-
erated by a finite-state Markov chain, the form of the monotone assumptions we employed
here is different from that in Peng and Wu [].

Recently, many works have been done on BSDEs with Markov chains. In fact, there are
two major formulations of the state space of the Markov chain in the literature. One is the
set of unit vectors in some Euclidean space []. The other one is the set of positive inte-
gers []. Each of the formulations was used by many researchers when they studied BS-
DEs driven by Markov chains. When a martingale representation was needed, the second
formulation was necessary. The first one facilitates the mathematics, that is, the symbol-
ism is nicer; the second one makes the mathematics more rigorous. Given a continuous-
time Markov chain, assuming its state space be the set of positive integers, there exists an
integer-valued random measure that counts the jumps of a Markov chain. Crepey and Ma-
toussi [] and Crepey [] considered BSDEs driven by both a Brownian motion and the
compensated martingale of a random measure. Tao et al. [] discussed BSDEs with a sin-
gular perturbed Markov chain; Tao et al. [, ] considered the regime-switching system
modulated by a Markov chain based on Crepey and Matoussi [] and Crepey []. When
the state space of a continuous-time Markov chain is described by the set of unit vectors
in Rd , Zhang et al. [] considered a system of Markov regime-switching model with Pois-
son jumps. Different from the above works, based on Cohen and Elliott [], we discussed
FBSDEs purely driven by a Markov chain rather than by a Brownian motion. Our model
depends only on the state space of a Markov chain and leads to a special structure.

In Section , we formulate our problem; in Section , the preliminaries are given; in Sec-
tion , we give our main result on the existence and uniqueness of the fully coupled FB-
SDE on a Markov chain and present the proofs; in Section , we discuss the existence and
uniqueness result of the FBSDE under other monotone assumptions; in the last section,
we give an application of these theoretical results to stochastic optimal control problem
through an example.

2 Formulation of the problem
Consider a continuous-time finite-state Markov chain m = {mt , t ∈ [, T]}. Following the
convention of Elliott et al. [], we assume that it takes values in unit vectors ei in Rd ,
where d is the number of states of the chain.

We consider stochastic processes defined on the filtered probability space (�,F ,Ft ,P),
where {Ft} is the completed natural filtration generated by the σ -fields Ft = σ ({ms,
s ≤ t}, F ∈ FT : P(F) = ), and F = FT . Note that if m is right-continuous, then this filtra-
tion is right-continuous. If At denotes the rate matrix for m at time t, then this chain has
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the following representation:

mt = m +
∫ t


Asms ds + Mt ,

where Mt is a martingale (see []).
We consider the following forward-backward stochastic differential equations:

{
Xt = x +

∫ t
 b(s, Xs, Ys, Zs) ds +

∫ t
 σ (s–, Xs–, Ys–, Zs–) dMs,

Yt = �(XT ) +
∫ T

t f (s, Xs, Ys, Zs) ds –
∫ T

t Zs– dMs,
()

where X, Y , Z take values in R
n, Rm, Rm×d , T >  is an arbitrary fixed number, and b, σ ,

f , � are functions of appropriate dimensions:

b : � × [, T] ×R
n ×R

m ×R
m×d −→ R

n,

σ : � × [, T] ×R
n ×R

m ×R
m×d −→R

n×d,

f : � × [, T] ×R
n ×R

m ×R
m×d −→ R

m,

� : � ×R
n −→R

m.

We shall seek an Ft-adapted triple (X, Y , Z) that satisfies the forward-backward stochas-
tic differential equation () on [, T] P-almost surely. That is, our aim is to find an Ft-
adapted solution of ().

Noting that only the s-left limit σ (ω, s–, Xs–, Ys–, Zs–) enters into FBSDE (), without loss
of generality, we assume that σ (s, Xs, Ys, Zs) is left-continuous in s for all w and X, Y . Since
M is a semimartingale, X, Y is càdlàg and adapted. We suppose the existence of the left
limits of Z. So Z must have at most a countable number of discontinuities, and then it
must be left-continuous at each t except possibly on a dt-null set. Hence, if Zs satisfies
FBSDE (), then so does Zs–:

{
Xt = x +

∫ t
 b(s, Xs, Ys, Zs–) ds +

∫ t
 σ (s–, Xs–, Ys–, Zs–) dMs,

Yt = �(XT ) +
∫ T

t f (s, Xs, Ys, Zs–) ds –
∫ T

t Zs– dMs.

Setting Z∗∗
t := Zt–, we have a left-continuous process Z∗∗, which also satisfies the desired

equations. Therefore, writing the left limits Zt– is unnecessary since we simply assume that
our solution is left-continuous.

Based on these arguments, we rewrite FBSDE () as
{

Xt = x +
∫ t

 b(s, Xs, Ys, Zs) ds +
∫ t

 σ (s, Xs–, Ys–, Zs) dMs,
Yt = �(XT ) +

∫ T
t f (s, Xs, Ys, Zs) ds –

∫ T
t Zs dMs.

Recall that FBSDE () is equivalent to
{

Xt = x +
∫ t

 b∗∗(s, Xs, Ys, Zs) ds +
∫ t

 σ (s, Xs–, Ys–, Zs) dms,
Yt = �(XT ) +

∫ T
t f ∗∗(s, Xs, Ys, Zs) ds –

∫ T
t Zs dms,

()

where b∗∗(s, Xs, Ys, Zs) = b(s, Xs, Ys, Zs) – σ (s, Xs, Ys, Zs)Asms and f ∗∗(s, Xs, Ys, Zs) = f (s, Xs,
Ys, Zs) + ZsAsms.

Obviously, FBSDE () is driven by the Markov chain m = {mt , t ∈ [, T]}.
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3 Preliminaries
3.1 Preliminary notation
Elliott et al. [] obtained the optional quadratic variation of Mt as the matrix process

[M, M]t =
t∑

s=

�Ms�M∗
s ,

where ‘∗’ means transpose.
Observing that A is the rate matrix of the Markov chain m, the predictable quadratic

variation is

〈M, M〉t =
∫ t



[
diag(Asms) – diag(ms)A∗

s – As diag(ms)
]

ds.

This can be seen through considering

diag(mt) = diag(m) +
∫ t


diag(Asms) ds +

∫ t


diag(dMs)

and

diag(mt) = mtm∗
t

= mm∗
 +

∫ t


msm∗

sA∗
s ds +

∫ t


ms– dM∗

s +
∫ t


Asmsm∗

s ds

+
∫ t


dMsm∗

s– +
t∑

s=

�Ms�M∗
s .

Equating these two, we get

[M, M]t = Lt +
∫ t



[
diag(Asms) – diag(ms)A∗

s – As diag(ms)
]

ds,

where L is some martingale. This in turn suggests that

〈M, M〉t =
∫ t



[
diag(Asms) – diag(ms)A∗

s – As diag(ms)
]

ds.

We will use the following notation:
By (·, ·) we denote the usual inner product in R

n or Rm; we use the usual Euclidean norm
in R

n and R
m; and for z ∈ R

m×d , we define |z| = {tr(zz∗)} 
 .

For z ∈R
m×d , z ∈R

m×d ,

((
z, z)) = tr

(
z(z)∗),

and for u = (x, y, z) ∈R
n ×R

m ×R
m×d , u = (x, y, z) ∈R

n ×R
m ×R

m×d ,

[
u, u] =

(
x, x) +

(
y, y) +

((
z, z)).
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We are given an m × n full-rank matrix G. For u = (x, y, z) ∈R
n ×R

m ×R
m×d , let

F(t, u) =
(
–G∗f (t, u), Gb(t, u), 

)
, H(t, u) =

(
, , Gσ (t, u)

)
,

where Gσ = (Gσ · · ·Gσd).
Furthermore, we define

〈C, D〉V = tr
(
C

[
diag(Asv) – diag(v)A∗

s – As diag(v)
]
D∗), ‖C‖

v = 〈C, C〉v,

where v is a basis vector in R
d .

3.2 BSDEs on Markov chains
We recall the existence and uniqueness results for a solution to the following BSDE on a
Markov chain:

Yt = �(XT ) –
∫ T

t
F(ω, s, Ys, Zs) ds –

∫ T

t

[
F(s, Ys–) + Zs

]
dMs

for functions F : � × [, T] × R
n × R

n×d and F : � × [, T] × R
n; these functions

are assumed to be progressively measurable, that is, F(·, s, Ys, Zs) and F(·, s, Ys) are Ft-
measurable for all t ∈ [, T].

Cohen and Elliott [] gave the following result about martingale representation.

Lemma  Any Rd-valued martingale L defined on (�,Ft ,P) can be represented as a
stochastic (in this case, Stieltjes) integral with respect to the martingale process M up to
equality P-a.s. This representation is unique up to a d〈M, M〉t × P-null set. That is,

Lt = L +
∫ t


Zs dMs,

where Zs is a predictable Rn×d-valued matrix process.

Cohen and Elliott [] also obtained the existence and uniqueness of a solution to the
above BSDE.

Theorem  Assume the Lipschitz continuity on the generators F and F, that is, that there
exists c ∈R such that, for all s ∈ [, T],

E
∣∣F

(
s, Y 

s , Z
s
)

– F
(
s, Y 

s , Z
s
)∣∣ ≤ cE

∣∣Y 
s – Y 

s
∣∣ + cE

∥∥Z
s – Z

s
∥∥

Ms
,

E
∥∥F

(
s, Y 

s–
)

– F
(
s, Y 

s–
)∥∥

Ms
≤ cE

∣∣Y 
s – Y 

s
∣∣.

Under this Lipschitz condition, the above equation has at most one solution up to indistin-
guishability for Y and equality d〈M, M〉t × P-a.s. for Y .

4 Existence and uniqueness for FBSDE (1)
We give two definitions.
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Definition  We denote by M(, T ;Rn) the set of all Rn-valued Ft-adapted processes
such that

E
∫ T



∣∣v(s)
∣∣ ds < +∞.

Definition  A triple of processes (X, Y , Z) : � × [, T] → R
n × R

m × R
m×d is called an

adapted solution of the FBSDE () if (X, Y , Z) ∈M(, T ;Rn ×R
m ×R

m×d) and it satisfies
FBSDE () P-almost surely.

The adaptedness of the solution enables us to rewrite FBSDE () in a differential form:

⎧⎪⎨
⎪⎩

dXt = b(t, Xt , Yt , Zt) dt + σ (t, Xt–, Yt–, Zt) dMt ,
–dYt = f (t, Xt , Yt , Zt) dt – Zt dMt ,
X = x, YT = �(XT ).

Now we give the main assumptions of our paper.

Assumption  For each u = (x, y, z) ∈ R
n × R

m × R
m×d , F(·, u), H(·, u) ∈ M(, T ;Rn ×

R
m ×R

m×d), and for each x ∈R
n, �(x) ∈ L(�,FT ;Rn). Moreover,

(i) F(t, u) is uniformly Lipschitz with respect to u;
(ii) H(t, u) is uniformly Lipschitz with respect to u;

(iii) �(x) is uniformly Lipschitz with respect to x.

Assumption  There exists constants c, c′
, c such that

[
F
(
t, u) – F

(
t, u), u – u] ≤ –c

∣∣G(
x – x)∣∣ – c′


(∣∣G∗(y – y)∣∣ +

∣∣G∗(z – z)∣∣),
[
H

(
t, u) – H

(
t, u), u – u] ≤ –c

∣∣G(
x – x)∣∣ – c′


(∣∣G∗(y – y)∣∣ +

∣∣G∗(z – z)∣∣),

∀u =
(
x, y, z), u =

(
x, y, z) ∈R

n ×R
m ×R

m×d, P-a.s., a.e. t ∈R
+,

and

(
�

(
x) – �

(
x), G

(
x – x)) ≥ c

∣∣G(
x – x)∣∣, ∀x ∈R

n,∀x ∈R
n,

where c, c′
, and c are given positive constants.

Now we give the main result of our paper.

Theorem  Let Assumptions  and  hold. Then there exists a unique adapted solution
(X, Y , Z) of FBSDE ().

Proof of uniqueness Let U = (X, Y , Z) and U = (X, Y , Z) be two adapted solutions
of FBSDE (). We set

(X̂, Ŷ , Ẑ) =
(
X – X, Y  – Y , Z – Z),

⎧⎪⎨
⎪⎩

b̂(t) = b(t, U
t ) – b(t, U

t ),
σ̂ (t) = σ (t, U

t ) – σ (t, U
t ),

f̂ (t) = f (t, U
t ) – f (t, U

t ).
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Then we have

{
dX̂t = b̂(t, Xt , Yt , Zt) dt + σ̂ (t, Xt–, Yt–, Zt) dMt ,
–dŶt = f̂ (t, Xt , Yt , Zt) dt – Ẑt dMt .

From Assumption  it follows that

E
(
supt∈[,T]|X̂t|

)
+ E

(
supt∈[,T]|Ŷt|

)
< +∞.

Using the Itô product rule of semimartingales, we have

d(GX̂s, Ŷs) = Ŷs–d(GX̂s) + (GX̂s–) dŶs + d(GX̂s) dŶs,

where d(GX̂s) dŶs = d[GX̂s, Ŷs]t , and hence, taking expectation and evaluating at t = T , by
Assumption  we get

E(ŶT , GX̂T ) = E
(
�

(
X

T
)

– �
(
X

T
)
, G

(
X

T – X
T
))

= E
∫ T



[(
–G∗ f̂ , X̂s

)
+ (Gb̂, Ŷs)

]
ds + E

T∑
s=

(
(Gσ̂ , Ẑs)

)�Ms�M∗
s

= E
∫ T



[
F
(
s, U) – F

(
s, U), U – U]ds

+ E
T∑

s=

[
H

(
s, U) – H

(
s, U), U – U]�Ms�M∗

s

= E
∫ T



[
F
(
s, U) – F

(
s, U), U – U]ds

+ E
∫ T



[
H

(
s, U) – H

(
s, U), U – U]d[M, M]s

= E
∫ T



[
F
(
s, U) – F

(
s, U), U – U]ds

+ E
∫ T



[
H

(
s, U) – H

(
s, U), U – U]d〈M, M〉s

≤ –cE
∫ T


|GX̂| ds – c′

E
∫ T



(∣∣G∗Ŷ
∣∣ +

∣∣G∗Ẑ
∣∣)ds

– cE
∫ T


|GX̂| d〈M, M〉s – c′

E
∫ T



(∣∣G∗Ŷ
∣∣ +

∣∣G∗Ẑ
∣∣)d〈M, M〉s.

Then we deduce that

c

(
E

∫ T


|GX̂| ds + E

∫ T


|GX̂| d〈M, M〉s

)

+ c′


[
E

∫ T



(∣∣G∗Ŷ
∣∣ +

∣∣G∗Ẑ
∣∣)ds + E

∫ T



(∣∣G∗Ŷ
∣∣ +

∣∣G∗Ẑ
∣∣)d〈M, M〉s

]
+ c|GX̂|

≤ .



Ji et al. Advances in Difference Equations  (2016) 2016:133 Page 8 of 18

Since c, c′
, and c are given positive constants, we have |GX̂| ≡ , |G∗Ŷ | ≡ , |G∗Ẑ| ≡

. So X̂
s ≡ X̂

s , Ŷ 
s ≡ Ŷ 

s , Ẑ
s ≡ Ẑ

s , d〈M, M〉t × P-a.s. �

We now consider the following family of FBSDEs parameterized by l ∈ [, ]:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dXl
t = [( – l)c′

(–G∗Y l
t ) + lb(t, Ul

t ) + φt] dt
+ [( – l)c′

(–G∗Zl
t) + lσ (t, Ul

t ) + ψt] dMt ,
–dY l

t = [( – l)cGXl
t + lf (t, Ul

t ) + γt] dt – Zl
t dMt ,

Xl
 = x, Y l

T = l�(Xl
T ) + ( – l)GXl

T + ξ ,

()

where φ, ψ , and γ are given processes in M(, T) with values in Rn, Rn×d , and Rm, re-
spectively. Clearly, when l = , ξ ≡ , the existence of a solution of FBSDE () implies the
existence of that of FBSDE (). When l =  in FBSDE (), it is

⎧⎪⎨
⎪⎩

dX
t = [–c′

G∗Y 
t + φt] dt + [–c′

G∗Z
t + ψt] dMt ,

–dY 
t = [cGX

t + γt] dt – Z
t dMt ,

Xl
 = x, Y 

T = GX
T + ξ .

()

For proving the existence part of the theorem, we first need the following two lemmas.

Lemma  The following equation has a unique solution:

⎧⎪⎨
⎪⎩

dXt = [–c′
G∗Yt + φt] dt + [–c′

G∗Zt + ψt] dMt ,
–dYt = [cGXt + γt] dt – Zt dMt ,
X = x, YT = λGXT + ξ ,

()

where λ is a nonnegative constant.

Proof We note that the matrix G is of full rank. The proof of the existence for FBSDE ()
can be divided into two cases, n ≤ m and n > m.

For the first case, the matrix G∗G is of full rank. Let

⎛
⎜⎝

X ′

Y ′

Z′

⎞
⎟⎠ =

⎛
⎜⎝

X
G∗Y
G∗Z

⎞
⎟⎠ ,

(
Y ′′

Z′′

)
=

(
(Im – G(G∗G)–G∗)Y
(Im – G(G∗G)–G∗)Z

)
.

Multiplying G∗ for (Y , Z) on both sides of the BSDE yields

⎧⎪⎨
⎪⎩

dX ′
t = [–c′

Y ′
t + φt] dt + [–c′

Z′
t + ψt] dMt ,

–dY ′
t = [cG∗GX ′

t + G∗γt] dt – Z′
t dMt ,

X ′
 = x, Y ′

T = λG∗GX ′
T + G∗ξ .

()

Similarly, multiplying (Im – G(G∗G)–G∗) on both sides of the same equation gives

{
–dY ′′

t = (Im – G(G∗G)–G∗)γt dt – Z′′
t dMt ,

Y ′′
T = (Im – G(G∗G)–G∗)ξ .
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Obviously, the pair (Y ′′, Z′′) is uniquely determined (see Cohen and Elliott []). The
uniqueness of (X ′, Y ′, Z′) follows from Theorem . In order to solve FBSDE (), we intro-
duce the following n × n-symmetric matrix-valued ODE, which is known as the matrix-
Riccati equation:

{
–K̇ (t) = –c′

K + cG∗G, t ∈ [, T],
KT = λG∗G.

It is well known that this equation has a unique nonnegative solution K ∈ C([, T); Sn),
where Sn stands for the space of all n × n-symmetric matrices. We then study the solution
(p, q) ∈ M(, T ; Rn+n×d) of the following linear simple BSDE:

{
–dpt = [–c′

K(t)pt + K(t)φt + G∗γt] dt + [K(t)ψt – (In + c′
K(t))qt] dMt , t ∈ [, T],

pT = G∗ξ .

We now consider X ′
t as the solution of the SDE

{
dX ′

t = [–c′
(K(t)X ′

t + pt) + φt] dt + [ψt – c′
qt] dMt ,

X ′
 = x.

Then we can easily check that (X ′
t , Y ′

t , Z′
t) = (X ′

t , K(t)X ′
t + pt , qt) is a solution of FBSDE

(). Once (X ′, Y ′, Z′) and (Y ′′, Z′′) are resolved, we can obtain the triple (X, Y , Z) uniquely
by

⎛
⎜⎝

X
Y
Z

⎞
⎟⎠ =

⎛
⎜⎝

X ′

G(G∗G)–Y ′ + Y ′′

G(G∗G)–Z′ + Z′′

⎞
⎟⎠ .

For the second case, the matrix GG∗ is of full rank. We set

⎛
⎜⎜⎜⎝

X ′

Y ′

Z′

X ′′

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

GX
Y
Z

(In – G∗(GG∗)–G)X

⎞
⎟⎟⎟⎠ ,

where X ′′ is the unique solution of the following linear SDE:

{
dX ′′

t = (In – G∗(GG∗)–G)φt dt + (In – G∗(GG∗)–G)ϕt dMt ,
X ′′

 = (In – G∗(GG∗)–G)x.

The triple (X ′, Y ′, Z′) solves the FBSDE

⎧⎪⎨
⎪⎩

dX ′
t = [–c′

GG∗Y ′
t + Gφt] dt + [–c′

GG∗Z′
t + Gψt] dMt ,

–dY ′
t = [cX ′

t + γt] dt – Z′
t dMt ,

X ′
 = Gx, Y ′

T = λX ′
T + ξ .

()
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In order to solve this equation, we introduce the following m × m-symmetric matrix-
valued matrix-Raccati equation:

{
–K̇ (t) = cIm – c′

KGG∗K , t ∈ [, T],
K(T) = λIm.

It is well known that this equation has a unique nonnegative solution K ∈ C([, T); Sm),
where Sm stands for the space of all m × m-symmetric matrices. We then look for the
solution (p, q) ∈ M(, T ; Rm+m×d) of the following linear simple BSDE:

⎧⎪⎨
⎪⎩

–dpt = [–c′
K(t)GG∗pt + K(t)Gφt + γt] dt + (K(t)Gψt – (Im + c′

K(t)GG∗)qt) dMt ,
t ∈ [, T],

pT = ξ .

We now let X ′
t be the solution of the following SDE:

{
dX ′

t = [–c′
GG∗(K(t)X ′

t + γt) + Gφt] dt + [Gψt – c′
GG∗qt] dMt ,

X ′
 = Gx.

Then we can easily check that (X ′
t , Y ′

t , Z′
t) = (X ′

t , K(t)X ′
t + pt , qt) is a solution of FBSDE ().

Once (X ′, X ′′, Y ′, Z′) are resolved, then by the definition we can obtain the triple (X, Y , Z)
uniquely as

⎛
⎜⎝

X
Y
Z

⎞
⎟⎠ =

⎛
⎜⎝

G∗(GG∗)–X ′ + X ′′

Y ′

Z′

⎞
⎟⎠ .

The proof is complete. �

Lemma  We assume Assumptions  and . If for an l ∈ [, ), there exists a solution
(Xl , Y l , Zl ) of FBSDE (), then there exists a positive constant δ such that for each δ ∈
[, δ], there exists a solution (Xl+δ , Y l+δ , Zl+δ) of FBSDE () for l = l + δ.

Proof Since for all φ ∈ M(, T ;Rn), γ ∈ M(, T ;Rm), ψ ∈ M(, T ;Rn×d), ξ ∈ L(�,
FT ,P), x ∈ R

n, l ∈ [, ), there exists a unique solution of (), for every Us = (Xs, Ys, Zs) ∈
M(, T ;Rn+m+m×d), there exists a unique triple us = (xs, ys, zs) ∈ M(, T ;Rn+m+m×d) satis-
fying the following FBSDE:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dxt = [( – l)c′
(–G∗yt) + lb(t, ut) + δb(t, Ut) + δc′

(G∗Yt) + φt] dt
+ [( – l)c′

(–G∗zt) + lσ (t, ut) + δσ (t, Ut) + δc′
(G∗Zt) + ψt] dMt ,

–dyt = [( – l)cGxt + lf (t, ut) + δ(–cGXt) + δf (t, Ut) + γt] dt – zt dMt ,
x = x, yT = l�(xT ) + ( – l)GxT + δ(�(XT ) – GXT ) + ξ .

We want to prove that the mapping defined by

Il+δ(U × XT ) = u × xT : M(, T ;Rn+m+m×d) × L(�,FT ,P)

→ M(, T ;Rn+m+m×d) × L(�,FT ,P)

is a contraction.
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Let U ′ × X ′
T = (X ′, Y ′, Z′) × X ′

T ∈ M(, T ;Rn+m+m×d) × L(�,FT ,P) and u′ × x′
T =

Il+δ(U ′ × X ′
T ). We set

Û = (X̂, Ŷ , Ẑ) =
(
X – X ′, Y – Y ′, Z – Z′),

û = (x̂, ŷ, ẑ) =
(
x – x′, y – y′, z – z′),

f̂s = f (s, Us) – f
(
s, U ′

s
)
, b̂s = b(s, Us) – b

(
s, U ′

s
)
, σ̂s = σ (s, Us) – σ

(
s, U ′

s
)
,

f̄s = f (s, us) – f
(
s, u′

s
)
, b̄s = b(s, us) – b

(
s, u′

s
)
, σ̄s = σ (s, us) – σ

(
s, u′

s
)
.

Then

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dx̂s = [( – l)c′
(–G∗ŷs) + lb̄s + δb̂s + δc′

G∗Ŷs] ds
+ [( – l)c′

(–G∗ẑs) + lσ̄s + δσ̂s + δc′
G∗Ẑs] dMs,

–dŷs = [( – l)cGx̂s + l f̄s + δ(–cGX̂s) + δf̂s] ds – ẑs dMs,
x̂ = , ŷT = l(�(xT ) – �(x′

T )) + ( – l)Gx̂T + δ(�(xT ) – �(x′
T ) – Gx̂T ).

Using the Itô product rule of semimartingales for the product (Gx̂s, ŷs), taking expecta-
tions, and evaluating at t = T yield

lE
(
�(xT ) – �

(
x′

T
)
, Gx̂T

)
+ ( – l)E(Gx̂T , Gx̂T ) + δE

(
�(XT ) – �

(
X ′

T
)

– GX̂T , Gx̂T
)

= lE
∫ T



[
F(s, us) – F

(
s, u′

s
)
, ûs

]
ds + lE

∫ T



[
H(s, us) – H

(
s, u′

s
)
, ûs

]
d〈M, M〉s

– ( – l)E
∫ T



[
c|Gx̂s| + c′


∣∣G∗ŷs

∣∣]ds – ( – l)E
∫ T



[
c′


∣∣G∗ẑs

∣∣]d〈M, M〉s

+ δE
∫ T



[
c(Gx̂s, GX̂s) + c′


(
G∗ŷs, G∗Ŷs

)
+

(
x̂s, –G∗ f̂s

)
+

(
G∗ŷs, b̂s

)]
ds

+ δE
∫ T



[
c′


(
G∗Ẑs, G∗ẑs

)
+ (ẑs, Gσ̂s)

]
d〈M, M〉s.

By Assumptions  and , since c >  and c > , we obtain

(
lc + ( – l)

)
E|Gx̂T | + cE

∫ T


|Gx̂s| ds

+ c′
E

∫ T



∣∣G∗ŷs
∣∣ ds + lc′

E
∫ T



∣∣G∗ẑs
∣∣ ds

+ lc′
E

∫ T



∣∣G∗ŷs
∣∣ d〈M, M〉s + lcE

∫ T


|Gx̂s| d〈M, M〉s

+ c′
E

∫ T



∣∣G∗ẑs
∣∣ d〈M, M〉s

≤ δcE
∫ T



(|Ûs| + |ûs|
)

ds + δcE
∫ T



(|Ûs| + |ûs|
)

d〈M, M〉s

+ δcE|X̂T | + δcE|x̂T |.
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For the difference of the solutions (ŷ, ẑ) = (y – y′, z – z′), we apply the usual technique to
the BSDE and derive that

E
∫ T


|ŷs| ds + E

∫ T


|ẑs| d〈M, M〉s

≤ cδE
∫ T


|Ûs| ds + cδE|X̂T | + cE

∫ T


|x̂s| ds + cE|x̂T |,

E
∫ T


|ŷs| ds + E

∫ T


|ẑs| d〈M, M〉s

≤ cδE
∫ T


|Ûs| ds + cδE|X̂T | + cE

∫ T


|x̂s| ds + cE|x̂T |.

Similarly, for the difference of the solution x̂ = x – x′, we apply the usual technique to the
forward part:

sup
≤s≤T

|x̂s| ≤ cE
∫ T



(|ŷs| + |ẑs|
)

ds + cE
∫ T


|ûs| d〈M, M〉s

+ cδE
∫ T


|Ûs| ds + cδE

∫ T


|Ûs| d〈M, M〉s,

E
∫ T


|x̂s| ds ≤ cTE

∫ T



(|ŷs| + |ẑs|
)

ds + cTE
∫ T


|ûs| d〈M, M〉s

+ cδTE
∫ T


|Ûs| ds + cδTE

∫ T


|Ûs| d〈M, M〉s.

Here the constant c depends on the Lipschitz constants, and so do G, c, c′
, and T .

Combing the above estimates, we get

E
∫ T


|ûs| ds + E

∫ T


|ûs| d〈M, M〉s + E|x̂T |

≤ cδ

{
E

∫ T


|Ûs| ds + E

∫ T


|Ûs| d〈M, M〉s + E|X̂T |

}
,

where the constant c depends on c, G, c, and c. If we choose δ = 
c

, then clearly for
each fixed δ ∈ [, δ], the mapping Iα+δ is a contraction in the sense that

E
∫ T


|ûs| ds + E

∫ T


|ûs| d〈M, M〉s + E|x̂T |

≤ 


{
E

∫ T


|Ûs| ds + E

∫ T


|Ûs| d〈M, M〉s + E|X̂T |

}
.

This indicates that this mapping has a unique fixed point (ul+δ) = (xl+δ , yl+δ , zl+δ),
which is a solution of FBSDE () for l = l + δ. The proof is complete. �

Proof of existence From Lemma  we immediately see that, when λ =  in FBSDE (), FB-
SDEs () for l =  (that is, FBSDE ()) has a unique solution. It then follows from Lemma 
that there exists a positive constant δ depending on Lipschitz constants, c, c′

, c, and T
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such that, for each δ ∈ [, δ], FBSDEs () for l = l +δ has a unique solution. We can repeat
this process for N times with  ≤ Nδ <  + δ. It then follows that, in particular, FBSDE
() for l =  with ξ ≡  has a unique solution. The proof is complete. �

5 Another existence and uniqueness theorem
Next, we give another existence and uniqueness theorem. First, we give another assump-
tion.

Assumption 
There exist constants c, c′

, c such that

[
F
(
t, u) – F

(
t, u), u – u] ≥ c

∣∣G(
x – x)∣∣ + c′


(∣∣G∗(y – y)∣∣ +

∣∣G∗(z – z)∣∣),
[
H

(
t, u) – H

(
t, u), u – u] ≥ c

∣∣G(
x – x)∣∣ + c′


(∣∣G∗(y – y)∣∣ +

∣∣G∗(z – z)∣∣),

∀u =
(
x, y, z), u =

(
x, y, z) ∈R

n ×R
m ×R

m×d, P-a.s., a.e. t ∈R
+,

and

(
�

(
x) – �

(
x), G

(
x – x)) ≤ –c

∣∣G(
x – x)∣∣, ∀x ∈R

n,∀x ∈R
n,

where c, c′
, and c are given positive constants.

Theorem  Let Assumptions  and  hold. Then there exists a unique adapted solution
(X, Y , Z) for FBSDE ().

Proof of uniqueness Using the same procedure as in the proof of uniqueness of Theorem ,
by Assumption  we get

E(ŶT , GX̂T )

= E
(
�

(
X

T
)

– �
(
X

T
)
, G

(
X

T – X
T
))

= E
∫ T



[
F
(
s, U) – F

(
s, U), U – U]ds

+ E
∫ T



[
H

(
s, U) – H

(
s, U), U – U]d〈M, M〉s

≥ cE
∫ T


|GX̂| ds + c′

E
∫ T



(∣∣G∗Ŷ
∣∣ +

∣∣G∗Ẑ
∣∣)ds

+ cE
∫ T


|GX̂| d〈M, M〉s + c′

E
∫ T



(∣∣G∗Ŷ
∣∣ +

∣∣G∗Ẑ
∣∣)d〈M, M〉s.

Thus, we deduce that

c

(
E

∫ T


|GX̂| ds + E

∫ T


|GX̂| d〈M, M〉s

)

+ c′


[
E

∫ T



(∣∣G∗Ŷ
∣∣ +

∣∣G∗Ẑ
∣∣)ds + E

∫ T



(∣∣G∗Ŷ
∣∣ +

∣∣G∗Ẑ
∣∣)d〈M, M〉s

]
+ c|GX̂|

≤ .
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Since c, c′
, and c are given positive constants, we have |GX̂| ≡ , |G∗Ŷ | ≡ , |G∗Ẑ| ≡

. So X̂
s ≡ X̂

s , Ŷ 
s ≡ Ŷ 

s , Ẑ
s ≡ Ẑ

s , d〈M, M〉t × P-a.s. �

We now consider the following family of FBSDEs parameterized by l ∈ [, ]:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dXl
t = [( – l)c′

(G∗Y l
t ) + lb(t, Ul

t ) + φt] dt
+ [lσ (t, Ul

t ) + ( – l)c′
(G∗Zl

t) + ψt] dMt ,
–dY l

t = [–( – l)cGXl
t + lf (t, Ul

t ) + γt] dt – Zl
t dMt ,

Xl
 = x, Y l

T = l�(Xl
T ) + ( – l)GXl

T + ξ ,

()

where φ, ψ , and γ are given processes in M(, T) with values in Rn, Rn×d , and Rm, respec-
tively. Clearly, when l =  and ξ ≡ , the existence of a solution of FBSDE () implies that
of FBSDE (). When l =  in FBSDEs (), it is

⎧⎪⎨
⎪⎩

dX
t = [c′

G∗Y 
t + φt] dt + [c′

G∗Z
t + ψt] dMt ,

–dY 
t = [–cGX

t + γt] dt – Z
t dMt ,

Xl
 = x, Y 

T = GX
T + ξ .

()

For proving the existence part of the theorem, we first need the following two lemmas.

Lemma  The following equation has a unique solution:

⎧⎪⎨
⎪⎩

dXt = [c′
G∗Yt + φt] dt + [c′

G∗Zt + ψt] dMt ,
–dYt = [–cGXt + γt] dt – Zt dMt ,
X = x, YT = λGXT + ξ ,

()

where λ is a nonnegative constant.

Lemma  Let Assumptions  and  hold. If for an l ∈ [, ), there exists a solution
(Xl , Y l , Zl ) of FBSDE (), then there exists a positive constant δ such that for each
δ ∈ [, δ], there exists a solution (Xl+δ , Y l+δ , Zl+δ) of FBSDE () for l = l + δ.

Remark  The proofs of Lemma  and Lemma  are similar to those of Lemma  and
Lemma .

Proof of existence From Lemma  we immediately see that when λ =  in FBSDE (),
FBSDE () for l =  (that is, FBSDE ()) has a unique solution. It then follows from Lemma 
that there exists a positive constant δ depending on the Lipschitz constants, c, c′

, c,
and T such that, for each δ ∈ [, δ], FBSDE () for l = l + δ has a unique solution. We can
repeat this process for N times with  ≤ Nδ <  + δ. It then follows that, in particular,
FBSDEs () for l =  with ξ ≡  has a unique solution.

The proof is complete. �

6 Application to stochastic optimal control problems
In this section, we give an application of the theorem to the stochastic maximum principle
in optimal control problems through an example of the linear quadratic case. Consider a
continuous-time finite-state Markov chain m = {mt , t ∈ [, T]}. We identify the states of
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the process with the unit vectors ei in R
k , where k is the number of states of the chain. The

rate matrix of mt is denoted by At .
All the stochastic processes are defined on the filtered probability space (�,F ,Ft ,P),

where {Ft} is the completed natural filtration generated by the σ -fields σ ({ms, s ≤ t}, F ∈
FT : P(F) = ), and F = FT . As noted before, the martingale Mt = mt – m –

∫ t
 Asms ds

is used to drive the controlled state process Xt . Next, we define the function � : [, T] ×
{ei|i = , , . . . , k} → Sk by

�(s, ei) := diag(Asei) – diag(ei)A∗
s – As diag(ei).

Note that

〈M, M〉t =
∫ t



[
diag(Asms) – diag(ms)A∗

s – As diag(ms)
]

ds

=
∫ t


�(s, ms) ds.

Consider the one-dimensional linear quadratic optimal control problem

{
dXt = [AXt + But] dt + [CXt– + Dut] dMt ,
X = x,

()

and the cost function

J
(
u(·)) = E

[



∫ T



(
QX

t + Ru
t
)

dt +



Gx
T

]
, ()

where the parameters A, B, Q, R, G are positive constant numbers, and C, D are R
×k

vectors.
Denote U = {u : [, T] × � → R | u is {Ft}-predictable, E

∫ T
 |u(s)| ds < +∞}. The

stochastic control problem is to find an optimal control u∗ ∈ U such that

J
(
u∗) = inf

u∈U
J(u).

In order to solve the problem, we define the Hamiltonian H : [, T] ×R×R×R×R
×k ×

{ei|i = , , . . . , k} →R by

H(t, x, u, p, s, ei) =



Qx +



Ru + (Ax + Bu)p + (Cx + Du)�(t, ei)s∗.

The adjoint equation is given by the following BSDE:

⎧⎪⎨
⎪⎩

dpt = –Hx(t, Xt , ut , pt , st , mt) dt + st dMt

= –(QXt + Apt + Ct�(t, mt)s∗
t ) dt + st dMt ,

pT = GXT .
()

Then the sufficient stochastic maximum principle is stated as follows.
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Theorem  Given the assumptions on the parameters above, the coupled FBSDE

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dXt = [AXt – BR–Bpt – BR–D�(t, mt)s∗
t ] dt,

+ [CXt– – DR–Bpt– – DR–D�(t, mt)s∗
t ] dMt ,

dpt = –(QXt + Apt + Ct�(t, mt)s∗
t ) dt + st dMt ,

X = x, pT = GXT ,

()

exists a unique solution (X̂t , p̂t , ŝt). Moreover, the stochastic linear quadratic problem is
solvable with the optimal controlled state process X̂t and the optimal control defined by

ût = –R–(Bp̂t– + D�(t, mt)ŝ∗
t
)
. ()

Proof First, it is easy to check that FBSDE () satisfies Assumptions  and . So, according
to Theorem , there exists a unique adapted solution (X̂t , p̂t , ŝt) ∈M(, T ;R×R×R

×k).
So, according to (), û ∈ U , and X̂ is the corresponding state process. Next, for any fixed
u ∈ U with the corresponding state process Xt , consider

J(u) – J(û) = E
[




∫ T



(
QX

t + Ru
t – QX̂

t – Rû
t
)

dt +


(
GX

T – GX̂
T
)]

.

Since G > , we have

E
[



(
GX

T – GX̂
T
)]

≥ E
[
(XT – X̂T )GX̂T

]

= E
[
(XT – X̂T )p̂T

]

= E
[∫ T


(Xt– – X̂t–) dp̂t +

∫ T


ˆpt–d(Xt – X̂t) +

∑
<t≤T

�(Xt – X̂t)�pt

]

= E
[∫ T


(Xt– – X̂t–)

(
–Hx(t, X̂t–, ût , p̂t–, ŝt , mt)

)
dt +

∫ T


(Xt– – X̂t–)ŝ dMt

+
∫ T


p̂t–

[
A(Xt– – X̂t–) + B(ut – ût)

]
dt +

∫ T


p̂t–

[
C(Xt– – X̂t–) + D(ut – ût)

]
dMt

+
∑

<t≤T

[
C(Xt– – X̂t–) + D(ut – ût)

]
�Mtst�Mt

]
.

Notice that

∑
<t≤T

[
C(Xt– – X̂t–) + D(ut – ût)

]
�Mtst�Mt

=
∫ T



[
C(Xt– – X̂t–) + D(ut – ût)

]
d[M, M]ts∗

t

= Lt +
∫ T



[
C(Xt– – X̂t–) + D(ut – ût)

]
d〈M, M〉ts∗

t

= Lt +
∫ T



[
C(Xt– – X̂t–) + D(ut – ût)

]
�(t, mt)s∗

t dt
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for some local martingale L (see []). So

E
[



(
GX

T – GX̂
T
)]

≥ E
[∫ T


(Xt– – X̂t–)

(
–Hx(t, X̂t–, ût , p̂t–, ŝt , mt)

)
dt

+
∫ T


p̂t–

[
A(Xt– – X̂t–) + B(ut – ût)

]
dt

+
∫ T



[
C(Xt– – X̂t–) + D(ut – ût)

]
�(t, mt)s∗

t dt
]

.

By the definition of H we have

E
[




∫ T



(
QX

t + Ru
t – QX̂

t – Rû
t
)

dt
]

= E
[




∫ T



(
QX

t– + Ru
t – QX̂

t– – Rû
t
)

dt
]

= E
[∫ T



{
H(t, Xt–, ut , p̂t–, ŝt , mt) – H(t, X̂t–, ût , p̂t–, ŝt , mt)

–
[
A(Xt– – X̂t–) + B(ut – ût)

]
p̂t– –

[
C(Xt– – X̂t–) + D(ut – ût)

]
�(t, mt)ŝ∗

t
}

dt
]

.

Adding the two equations, we have

J(u) – J(û) ≥ E
[∫ T



(
H(t, Xt–, ut , p̂t–, ŝt , mt) – H(t, X̂t–, ût , p̂t–, ŝt , mt)

– (Xt– – X̂t–)Hx(t, X̂t–, ût , p̂t , ŝt , mt)
)

dt
]

= E
{∫ T



[
H(t, Xt–, ut , p̂t–, ŝt , mt) – H(t, X̂t–, ût , p̂t–, ŝt , mt)

– (Xt– – X̂t–)
(
QX̂t– + Ap̂t– + C�(t, mt)ŝt

)]
dt

}

= E
[∫ T



(



QX
t– –




QX̂
t– – (Xt– – X̂t–)QX̂t–

+



Ru
t + Butp̂t– + Dut�(t, mt)ŝ∗

t

–



Rû
t – Bûtp̂t– – Dût�(t, mt)ŝ∗

t

)
dt

]

≥ .

By the convexity of 
 Qx and the fact that ût = –R–(Bp̂t– + D�(t, mt)ŝ∗

t ) we get the mini-
mum point of the function F(u) = 

 Ru
t + Butp̂t– + Dut�(t, mt)ŝ∗

t . Therefore, we conclude
that

J(u) – J(û) ≥ ,

which proves that û is optimal. �
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Remark  Differently from the Brownian motion case, the optimal control and the Hamil-
tonian additionally depend on the state of the Markov chain. This is because Markov
chains are discontinuous stochastic processes with finite variation and the quadratic
processes of the martingales generated by Markov chains are quite different from the
continuous-time diffusions.
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