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Abstract
In this paper, we investigate some properties of polynomials related to Sheffer
sequences. Finally, we derive some identities of higher-order Frobenius-Euler
polynomials.

1 Introduction
Let λ (�= ) ∈ C. The higher-order Frobenius-Euler polynomials are defined by the gener-
ating function to be

(
 – λ

et – λ

)α

ext = eH
(α)
(x|λ)t =

∞∑
n=

H (α)
n (x|λ) t

n

n!
(see [–]) ()

with the usual convention about replacing (H (α)(x|λ))n by H (α)
n (x|λ). In the special case,

x = , H (α)
n (|λ) =H (α)

n (λ) are called the nth Frobenius-Euler numbers of order α (∈R).
From () we have

H (α)
n (x|λ) =

n∑
l=

(
n
l

)
H (α)

n–l(λ)x
l =

n∑
l=

(
n
l

)
H (α)

n–l(λ)x
n–l (see []). ()

By () we get

∂

∂x
H (α)

n (x|λ) = nH (α)
n–(x|λ), H ()

n (x|λ) = xn for n ∈ Z+. ()

It is not difficult to show that

H (α)
n (x + |λ) – λH (α)

n (x|λ) = ( – λ)H (α–)
n (x|λ) (see [–]). ()

Let us define the λ-difference operator �λ as follows:

�λf (x) = f (x + ) – λf (x). ()
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From () we can derive the following equation:

�n
λf (x) = �λ · · ·�λ︸ ︷︷ ︸

n-times

f (x) =
n∑

k=

(
n
k

)
(–λ)n–kf (x + k)

=
n∑

k=

(
n
k

)
(–λ)kf (x + n – k). ()

As is well known, the Stirling numbers S(l,n) of the second kind are defined by the gener-
ating function to be

(
et – 

)n = n!
∞∑
l=

S(l,n)
tl

l!
(see [, , ]) ()

and

(
et – 

)n = ∞∑
l=

( n∑
m=

(
n
m

)
(–)n–mml

)
tl

l!
. ()

By () and (), we get

S(l,n) =

n!

n∑
m=

(
n
m

)
(–)n–mml =

�nl

n!
(see []), ()

where �f (x) = f (x + ) – f (x).
Now, we consider the λ-analogue of the Stirling numbers of the second kind as follows:

(
et – λ

)n = n!
∞∑
l=

S(l,n|λ) t
l

l!
()

and

(
et – λ

)n = ∞∑
l=

( n∑
m=

(
n
m

)
(–λ)n–mml

)
tl

l!
. ()

From () and (), we have

S(l,n|λ) = 
n!

n∑
m=

(
n
m

)
(–λ)n–mml =


n!

�n
λ

l ()

and

S(l,n|λ) =  for n > l. ()

From () and (), we have

�λH (α)
n (x|λ) = ( – λ)H (α–)

n (x|λ). ()
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Let F be the set of all formal power series in the variable t over C with

F =

{
f (t) =

∞∑
n=

ak
k!
tk

∣∣∣ ak ∈C

}
.

P indicates the algebra of polynomials in the variable x over C, and P
* is the vector space

of all linear functionals on P (see [, ]). In [], 〈L|p(x)〉 denotes the action of the linear
functional L on a polynomial p(x), and we remind that the vector space structure on P

* is
defined by

〈
L +M|p(x)〉 = 〈

L|p(x)〉 + 〈
M|p(x)〉,〈

cL|p(x)〉 = c
〈
L|p(x)〉,

where c is a complex constant.
The formal power series

f (t) =
∞∑
k=

ak
k!
tk ∈F ()

defines a linear functional on P by setting

〈
f (t)|xn〉 = an for all n ∈ Z+ (see []). ()

From () and (), we have

〈
tk|xn〉 = n!δn,k (see [, ]). ()

Let fL(t) =
∑∞

k=
〈L|xk〉
k! tk . From () we have

〈
fL(t)|xn

〉
=

〈
L|xn〉 for all n ∈ Z+. ()

By () we get L = fL(t). It is known in [] that the map L �→ fL(t) is a vector space isomor-
phism from P

* onto F . Henceforth,F will denote both the algebra of formal power series
in t and the vector space of all linear functionals on P, and so an element f (t) of F will be
thought of as both a formal power series and a linear functional.We will callF the umbral
algebra. The umbral calculus is the study of umbral algebra (see [, ]).
The orderO(f (t)) of the nonzero power series f (t) is the smallest integer k for which the

coefficient of tk does not vanish. A series f (t) has O(f (t)) =  is called a delta series and a
series f (t) has O(f (t)) =  is called an invertible series (see [, ]). By () and (), we get
〈eyt|xn〉 = yn, and so 〈eyt|p(x)〉 = p(y) (see [, ]). For f (t) ∈F and p(x) ∈ P, we have

f (t) =
∞∑
k=

〈f (t)|xk〉
k!

tk , p(x) =
∞∑
k=

〈tk|p(x)〉
k!

xk . ()
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Let f(t), f(t), . . . , fn(t) ∈F . Then we see that

〈
f(t)f(t) · · · fn(t)|xn

〉
=

∑
i+···+im=n

(
n

i, . . . , im

)〈
f(t)|xi

〉 · · · 〈fm(t)|xim 〉
, ()

where
( n
i,...,im

)
= n!

i!···im ! (see [, ]).
For f (t), g(t) ∈F and p(x) ∈ P, it is easy to show that

〈
f (t)g(t)|p(x)〉 = 〈

f (t)|g(t)p(x)〉 = 〈
g(t)|f (t)p(x)〉 (see []). ()

From (), we can derive the following equation:

p(k)() =
〈
tk|p(x)〉 and

〈
|p(k)(x)〉 = p(k)(). ()

By () we get

tkp(x) = p(k)(x) =
dkp(x)
dxk

(see [, ]). ()

Thus, from () we have

eytp(x) = p(x + y). ()

Let Sn(x) be polynomials in the variable x with degree n, and let f (t) be a delta series
and g(t) be an invertible series. Then there exists a unique sequence Sn(x) of polynomials
with 〈g(t)f (t)k|Sn(x)〉 = n!δn,k (n,k ≥ ), where δn,k is the Kronecker symbol. The sequence
Sn(x) is called the Sheffer sequence for (g(t), f (t)), which is denoted by Sn(x) ∼ (g(t), f (t)).
If Sn(x) ∼ (, f (t)), then Sn(x) is called the associated sequence for f (t). If Sn(x) ∼ (g(t), t),
then Sn(x) is called the Appell sequence for g(t) (see [, ]). For p(x) ∈ P, the following
equations ()-() are known in [, ]:

〈
eyt – 

t

∣∣∣p(x)〉 = ∫ y


p(u)du, ()

〈
f (t)|xp(x)〉 = 〈

∂t f (t)|p(x)
〉
=

〈
f ′(t)|p(x)〉, ()

and

〈
eyt – |p(x)〉 = p(y) – p(). ()

For Sn(x)∼ (g(t), f (t)), we have

h(t) =
∞∑
k=

〈h(t)|Sk(x)〉
k!

g(t)f (t)k , h(t) ∈F , ()

p(x) =
∞∑
k=

〈g(t)f (t)k|p(x)〉
k!

Sk(x), p(x) ∈ P, ()
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f (t)Sn(x) = nSn–(x),
〈
f (t)|p(αx)〉 = 〈

f (αt)|p(x)〉, ()


g(f̄ (t))

eyf̄ (t) =
∞∑
k=

Sk(y)
k!

tk for all y ∈C, ()

where f̄ (t) is the compositional inverse of f (t).

Sn(x + y) =
n∑

k=

(
n
k

)
Pk(y)Sn–k(x) =

n∑
k=

(
n
k

)
Pk(x)Sn–k(y), ()

where Pk(y) = g(t)Sk(y) ∼ (, f (t)) (see [, ]).
In contrast to the higher-order Euler polynomials, the more general higher-order

Frobenius-Euler polynomials have never been studied in the context of umbral algebra
and umbral calculus.
In this paper, we investigate some properties of polynomials related to Sheffer se-

quences. Finally, we derive some identities of higher-order Frobenius-Euler polynomials.

2 Associated sequences
Let pn(x)∼ (, f (t)) and qn(x)∼ (, g(t)). Then, for n≥ , we note that

qn(x) = x
(
f (t)
g(t)

)n

x–pn(x) (see []). ()

Let us take f (t) = eat –  (a �= ). Then we see that f ′(t) = aeat , f̄ (t) = a– log(t + ).
From (), we can derive the associated sequence pn(x) for f (t) = eat –  as follows:

pn(y) =
〈
eyt|pn(x)

〉
=

〈
eyf̄ (t)|xn〉 = 〈

e
y
a log(t+)|xn〉

=
〈
(t + )

y
a |xn〉 = ∞∑

k=

( y
a
k

)〈
tk|xn〉

=
n∑

k=

( y
a
k

)
n!δn,k =

( y
a
n

)
n! =

(
y
a

)
n
, ()

where (a)n = a(a – ) · · · (a – n + ) = �n–
i= (a – i).

Therefore, by () we obtain, for n ∈ Z+,

pn(x) =
(
x
a

)
n
∼ (

, eat – 
)
.

We get the following:

pn+(x) = x
(
f ′(t)

)–pn(x) = a–xe–atpn(x)

=
(
x
a

)(
x – a
a

)
n
=

(
x
a

)
pn(x – a). ()
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From (), we can derive the equation

pn+(x) =
(
x
a

)
pn(x – a) =

(
x
a

)(
x – a
a

)
pn(x – a)

=
(
x
a

)(
x – a
a

)(
x – a
a

)
pn(x – a) = · · ·

=
(
x
a

)(
x
a
– 

)(
x
a
– 

)
· · ·

(
x
a
– n

)
. ()

By () we get

(
x
a

)
n
=

∞∑
k=

〈tk|( xa )n〉
k!

xk =
n∑

k=

S(n,k)
ak

xk ()

and


k!

〈
tk

∣∣∣( x
a

)
n

〉
=
S(n,k)
ak

, ()

where S(n,k) is the Stirling numbers of the first kind.
Therefore, by () and (), we obtain the following theorem.

Lemma  For n,k ≥ , we have

〈tk|( xa )n〉
k!

=
S(n,k)
ak

.

From () we note that

∞∑
k=

( xa )k
k!

tk = e
x
a log(+t) = (t + )

x
a . ()

And by () we get

(
x + y
a

)
n
=

n∑
k=

(
n
k

)(
x
a

)
k

(
y
a

)
n–k

. ()

As is well known, the nth Frobenius-Euler polynomials are defined by the generating
function to be

 – λ

et – λ
ext =

∞∑
n=

Hn(x|λ) t
n

n!
. ()

Thus, by () we see that Hn(x|λ)∼ ( et–λ
–λ

, t). So, we note that

et – λ

 – λ
Hn(x|λ)∼ (, t). ()
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It is easy to show that xn ∼ (, t) (see Eq. ()). Thus, from () we have

xn = x
(
t
t

)n

x–
(
et – λ

 – λ
Hn(x|λ)

)
=


 – λ

(
et – λ

)
Hn(x|λ)

=


 – λ

(
Hn(x + |λ) – λHn(x|λ)

)
. ()

3 Frobenius-Euler polynomials of order α

From () and (), we note that

H (α)
n (x|λ)∼

((
et – λ

 – λ

)α

, t
)

()

and (
 – λ

et – λ

)α

xn =H (α)
n (x|λ) for all n ≥ . ()

From (), we have

H (α)
n (x + y) =

n∑
k=

(
n
k

)
H (α)

k (y|λ)xn–k

=
n∑

k=

(
n
k

)
H (α)

k (x|λ)yn–k . ()

Let us take the operator ( –λ
et–λ

)β on both sides of ().
Then we have

(
 – λ

et – λ

)β

H (α)
n (x + y|λ) =

(
 – λ

et – λ

)β(
 – λ

et – λ

)α

(x + y)n

=
(
 – λ

et – λ

)α+β

(x + y)n =H (α+β)
n (x + y|λ) ()

and by () we get

H (α+β)
n (x + y|λ) =

n∑
k=

(
n
k

)
H (α)

k (y|λ)
(
 – λ

et – λ

)β

xn–k

=
n∑

k=

(
n
k

)
H (α)

k (y|λ)H (β)
n–k(x|λ). ()

Therefore, by () we obtain the following proposition.

Proposition  For α,β ∈C and n≥ , we have

H (α+β)
n (x + y|λ) =

n∑
k=

(
n
k

)
H (α)

k (x|λ)H (β)
n–k(y|λ)

=
n∑

k=

(
n
k

)
H (α)

k (y|λ)H (β)
n–k(x|λ).
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Thus, we have

ext =
∞∑
n=

H ()
n (x|λ) t

n

n!
. ()

Thus, by () we get

H ()
n (x|λ) = xn. ()

Let us take β = –α. Then, from Proposition , we have

(x + y)n =
n∑

k=

(
n
k

)
H (α)

n–k(x|λ)H (–α)
k (y|λ)

=
n∑

k=

(
n
k

)
H (α)

n–k(y|λ)H (–α)
k (x|λ). ()

Therefore, by () we obtain the following corollary.

Corollary  For n≥ , we have

(x + y)n =
n∑

k=

(
n
k

)
H (α)

n–k(x|λ)H (–α)
k (y|λ)

=
n∑

k=

(
n
k

)
H (α)

n–k(y|λ)H (–α)
k (x|λ).

In the special case, y = , we have

xn =
n∑

k=

(
n
k

)
H (α)

n–k(x|λ)H (–α)
k (λ).

Let α ∈N. We get

∞∑
n=

H (–α)
n (λ)
n!

tn =
(
et – λ

 – λ

) α

=


( – λ)α

α∑
l=

(
α

l

)
(–)α–lλα–lelt

=
∞∑
n=

(


( – λ)α

α∑
l=

(
α

l

)
(–)α–lλα–lln

)
tn

n!
. ()

Thus, from () we have

H (–α)
n (λ) =


( – λ)α

α∑
l=

(
α

l

)
(–)α–lλα–lln

=


( – λ)α
�α

λ
n =

α!
( – λ)α

�α
λn

α!
=

α!
( – λ)α

S(n,α|λ). ()

Therefore, by (), () and (), we obtain the following theorem.
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Theorem  For α ∈N and n≥ , we have

( – λ)α

α!
xn =

n∑
k=

(
n
k

)
H (α)

n–k(x|λ)S(k,α|λ).

From (), we have

xn =
n∑

k=

〈( et–λ
–λ

)αtk|xn〉
k!

H (α)
k (x|λ)

=
n∑

k=


k!

〈(
et – λ

 – λ

)α∣∣∣tkxn〉H (α)
k (x|λ)

=
n∑

k=

(
n
k

)〈(
et – λ

 – λ

)α∣∣∣xn–k〉H (α)
k (x|λ) ()

and

〈(
et – λ

 – λ

)α∣∣∣xn–k〉 = ∞∑
j=

H (–α)
j (λ)
j!

〈
tj|xn–k 〉

=
∞∑
j=

H (–α)
j (λ)
j!

δn–k,j(n – k)!

=H (–α)
n–k (λ). ()

By () and (), we also get

xn =
n∑

k=

(
n
k

)
H (α)

k (x|λ)H (–α)
n–k (λ).

4 Further remark
Let us take a =  in (). Then we have (x)n ∼ (, f (t) = et – ), xn ∼ (, g(t) = t).
For n≥ , by () we get

xn = x
(
et – 
t

)n

x–(x)n = x
(
et – 
t

)n

(x – )n–

= x
∞∑
l=

n!
(l + n)!

S(l + n,n)tl(x – )n–, ()

where S(m,n) is the Stirling numbers of the second kind.
From () we have

(x + )n+ = (x + )
n∑
l=

(n + )!
(l + n + )!

S(l + n + ,n + )tl(x)n, ()

where

(x)n =
n∑
l=

S(n,k)xk . ()
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Thus, by () we get

tl(x)n =
dl

dtl
(x)n =

n∑
k=l

S(n,k)(k)lxk–l. ()

From () and (), we can derive the following equation:

(x + )n =
n∑
l=

(n + )!
(l + n + )!

S(l + n + ,n + )
n∑
k=l

S(n,k)(k)lxk–l

=
n∑
l=

n–l∑
m=

(l+m
l

)
(n+l+

l
)S(l + n + ,n + )S(n, l +m)xm

=
n∑

m=

{n–m∑
l=

(l+m
l

)
(n+l+

l
)S(l + n + ,n + )S(n, l +m)

}
xm ()

and

(x + )n =
n∑
l=

(
n
l

)
xl. ()

Therefore, by () and (), we obtain the following lemma.

Lemma  For  ≤ m ≤ n, we have

(
n
m

)
=

n–m∑
l=

(l+m
l

)
(n+l+

l
)S(l + n + ,n + )S(n, l +m).

Let α = . Then we write H ()
n (x|λ) =Hn(x|λ). From (), we note that

(x)n ∼ (
, et – 

)
. ()

Thus, by () and (), we get

Hn(x|λ) =
∞∑
k=

〈(et – )k|Hn(x|λ)〉
k!

(x)k

=Hn(λ) +
∞∑
k=

〈(et – )k|Hn(x|λ)〉
k!

(x)k . ()

For k ≥ , we have

〈(
et – 

)k|Hn(x|λ)
〉
=

n∑
l=

(
n
l

)
Hn–l(λ)

〈(
et – 

)k|xl〉. ()

From (), we have


k!

〈(
et – 

)k|xl〉 = S(l,k). ()

Therefore, by (), () and (), we obtain the following theorem.
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Theorem  For n ≥ , we have

Hn(x|λ) =Hn(λ) +
n∑
k=

n∑
l=

(
n
l

)
Hn–l(λ)S(l,k)(x)k

=Hn(λ) +
n∑
k=

n∑
l=

k∑
m=

(
n
l

)
Hn–l(λ)S(l,k)S(k,m)xm.

From the recurrence formula of the Appell sequence, we note that

H (α)
n+(x|λ) =

(
x – α

et

et – λ

)
H (α)

n (x|λ) = xH (α)
n (x|λ) – αet

et – λ
H (α)

n (x|λ)

= xH (α)
n (x|λ) – α

( – λ)
 – λ

et – λ
H (α)

n (x + )

= xH (α)
n (x|λ) – α

( – λ)
H (α+)

n (x + ). ()

Therefore, by () we obtain the following theorem.

Theorem  For n≥ , we have

H (α)
n+(x|λ) = xH (α)

n (x|λ) – α

( – λ)
H (α+)

n (x + ).
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