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Abstract
In the present paper, a new theorem on the degree of approximation of a function f̃ ,
conjugate to a 2π periodic function f belonging to the Lipα (0 < α ≤ 1) class without
the monotonicity condition on the generating sequence {pn} has been established,
which in turn generalizes the results of Lal (Appl. Math. Comput. 209: 346-350, 2009)
on a Fourier series.
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1 Introduction
The degree of approximation of functions belonging to Lipα, Lip(α, r), Lip(ξ (t), r) and
W (Lr , ξ (t)), (r ≥ )-classes through trigonometric Fourier approximation using different
summability matrices with monotone rows has been proved by various investigators like
Khan [], Mittal et al. [, ], Mittal, Rhoades and Mishra [], Qureshi [], Chandra [],
Leindler [], Rhoades et al. []. Recently Lal [] has proved a theorem on the degree of
approximation of a function f belonging to the Lipα ( < α ≤ ) class by C ·Np summa-
bility method of its Fourier series. Lal [] has assumed monotonicity on the generating
sequence {pn}. The approximation of a function f̃ (x), conjugate to a π periodic function
to f ∈ Lipα ( < α ≤ ) using product (C ·Np)-summability has not been studied so far. In
this paper, we obtain a new theoremon the degree of approximation of a function f̃ , conju-
gate to a π periodic function f ∈ Lipα ( < α ≤ ) class without monotonicity condition
on the generating sequence {pn}.
Let

∑∞
n= an be a given infinite series with the sequence of nth partial sums {sn}. Let {pn}

be a non-negative sequence of constants, real (R) or complex, and let us write

Pn =
n∑

k=

pk �=  ∀n≥ ,p– =  = P– and Pn → ∞ as n→ ∞.

The sequence to sequence transformation tNn =
∑n

ν= pn–νsν/Pn defines the sequence
{tNn } of Nörlund means of the sequence {sn}, generated by the sequence of coefficients
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{pn}. The series ∑∞
n= an is said to be Np summable to the sum s if limn→∞ tNn exists and is

equal to a finite number s. In the special case, in which

pn =

(
n + α – 

α – 

)
=

(n + α)
(n + )(α)

(α > ),

the Nörlund summability Np reduces to the familiar Cα summability.
The product ofC summability with aNp summability definesC ·Np summability. Thus

the C ·Np mean is given by tCNn = 
n+

∑n
k= P–

k
∑k

ν= pk–νsν .
If tCNn → s as n → ∞, then the infinite series

∑∞
n= an or the sequence {sn} is said to be

summable C ·Np to the sum s if limn→∞ tCNn exists and is equal to s.

sn → s ⇒ Np(sn) = tNn = P–
n

n∑
ν=

pn–νsν → s, as n→ ∞,Np method is regular,

⇒ C(Np(sn)
)
= tCNn → s, as n → ∞,C method is regular,

⇒ C ·Np method is regular.

Let f (x) be a π-periodic function and Lebesgue integrable. The Fourier series of f (x) is
given by

f (x)∼ a


+
∞∑
n=

(an cosnx + bn sinnx) ≡
∞∑
n=

An(x), ∀n≥ , (.)

with (n + )th partial sum sn(f ;x) called the trigonometric polynomial of degree (order) n
of the first (n + ) terms of the Fourier series of f .
The conjugate series of Fourier series (.) is given by

∞∑
n=

(bn cosnx – an sinnx) ≡
∞∑
n=

Bn(x). (.)

A function f (x) ∈ Lipα if

f (x + t) – f (x) =O
(∣∣tα∣∣) for  < α ≤ , t > .

L∞-norm of a function f : R → R is defined by ‖f ‖∞ = sup{|f (x)| : x ∈ R}.
The degree of approximation of a function f : R → R by the trigonometric polynomial

tn of order n under the sup norm ‖ ‖∞ is defined by []∥∥tn – f
∥∥∞ = sup

{∣∣tn(x) – f (x)
∣∣ : x ∈ R

}
and En(f ) of a function f ∈ Lr is given by En(f ) =minn ‖tn – f ‖r .
The conjugate function f̃ (x) is defined for almost every x by

f̃ (x) = –

π

∫ π


ψ(t) cot t/dt

= lim
h→

(
–


π

∫ π

h
ψ(t) cot t/dt

)
(see [, Definition .]).

We note that tNn and tCNn are also trigonometric polynomials of degree (or order) n.
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Abel’s transformation: The formula

n∑
k=m

ukvk =
n–∑
k=m

Uk(vk – vk+) –Um–vm +Unvn, (.)

where  ≤ m ≤ n, Uk = u + u + u + · · · + uk , if k ≥ , U– = , which can be verified, is
known as Abel’s transformation and will be used extensively in what follows.
If vm, vm+, . . . , vn are non-negative and non-increasing, the left-hand side of (.) does

not exceed vmmaxm–≤k≤n |Uk| in absolute value. In fact,∣∣∣∣∣
n∑

k=m

ukvk

∣∣∣∣∣ ≤ max |Uk|
{ n–∑

k=m

(vk – vk+) + vm + vn

}

= vmmax |Uk|. (.)

We write throughout the paper

ψx(t) = ψ(t) = f (x + t) – f (x – t),

(C̃N)n(t) =


π (n + )

n∑
k=

P–
k

k∑
ν=

pν

cos(k – v + /)t
sin t/

,
(.)

τ = [/t], where τ denotes the greatest integer not exceeding /t, Pτ = P[/t], �pk = pk –
pk+.

2 Known results
In a recent paper Lal [] obtained a theorem on the degree of approximation for a function
belonging to the Lipschitz class Lipα using Cesàro-Nörlund (C ·Np)-summability means
of its Fourier series with non-increasing weights {pn}. He proved the following theorem.

Theorem . Let Np be a regular Nörlund method defined by a sequence {pn} such that

Pτ

n∑
ν=τ

P–
ν =O(n + ). (.)

Let f ∈ L[, π ] be a π -periodic function belonging to Lipα ( < α ≤ ), then the degree
of approximation of f by C ·Np means of its Fourier series (.) is given by

sup
≤x≤π

∣∣tCNn (x) – f (x)
∣∣ = ∥∥tCNn – f

∥∥∞ =

{
O((n + )–α),  < α < ,
O(log(n + )πe/(n + )), α = .

(.)

Remark  In the proof of Theorem . of Lal [, p.], the estimate for the case α =  is
obtained as

O
(


n + 

)
+O

(
log(n + )π

n + 

)
=O

(
log e
n + 

)
+O

(
log(n + )π

n + 

)
=O

(
log(n + )πe

n + 

)
.

Since /(n + ) ≤ log((n + )π )/(n + ), the e is not needed in (.) for the case α =  (cf. [,
p.]).
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Remark  Lal [] has used the monotonicity condition on the generating sequence {pn}
in the proof of Theorem . but has not mentioned it in the statement.

3 Main theorem
The theory of approximation is a very extensive field and the study of theory of trigono-
metric approximation is of great mathematical interest and of great practical importance.
It is well known that the theory of approximations, i.e., TFA, which originated from awell-
known theorem ofWeierstrass, has become an exciting interdisciplinary field of study for
the last  years. These approximations have assumed important new dimensions due
to their wide applications in signal analysis [] in general and in digital signal processing
[] in particular, in view of the classical Shannon sampling theorem. Mittal et al. [–,
] have obtained many interesting results on TFA using summability methods without
monotonicity on the rows of the matrix T : a digital filter. Broadly speaking, signals are
treated as functions of one variable and images are represented by functions of two vari-
ables. But till now, nothing seems to have been done so far to obtain the degree of ap-
proximation of conjugate of a function using C · Np product summability method of its
conjugate series of a Fourier series. The observations of Remarks  and  motivated us to
determine a proper set of conditions to prove Theorem . on the conjugate series of its
Fourier series. The series, conjugate to a Fourier series, is not necessarily a Fourier series.
Hence a separate study of conjugate series is desirable, which attracted the attention of
researchers.
Therefore, the purpose of present paper is to establish a quite new theoremon the degree

of approximation of a function f̃ (x), conjugate to a π-periodic function f belonging to
the Lipα ( < α ≤ ) class by C ·Np means of conjugate series of its Fourier series without
monotonicity on the generating sequence {pn} (that is, weakening the conditions on the
filter, we improve the quality of a digital filter [, p.]). More precisely, we prove the
following theorem.

Theorem . Let Np be the regular Nörlund summability matrix generated by the non-
negative {pn} such that

(n + )pn =O(Pn), ∀n≥ . (.)

Let f ∈ L[, π ] be a π -periodic signal (function). Then the degree of approximation of
f̃ (x), conjugate to f ∈ Lipα ( < α ≤ ) by C · Np means of conjugate series of its Fourier
series, is given by

∥∥t̃CNn (f ;x) – f̃ (x)
∥∥∞ = sup

≤x≤π

∣∣t̃CNn (f ;x) – f̃ (x)
∣∣

=

{
O((n + )–α),  < α < ,
O( log(n+)n+ ), α = .

(.)

Remark  For a non-increasing sequence {pn}, we get

Pn =
n∑

k=

pk ≥ pn
n∑

k=

 = (n + )pn, i.e. (n + )pn =O(Pn).
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Thus the condition (.) holds for a non-increasing sequence {pn}. Hence our Theorem .
generalizes Theorem . on conjugate series of its Fourier series.

Note  The product transformC ·Np plays an important role in signal theory as a double
digital filter [].

4 Lemmas
We need the following lemmas for the proof of our theorem.

Lemma  If Pn is positive and P–
n ≥ P–

n+ ∀n ≥ , then for  ≤ a < b ≤ ∞,  < t ≤ π and
for any n, we have

∣∣∣∣∣
b∑

k=a

P–
k ei(n–k)t

∣∣∣∣∣ =
{
O(t–) for any a,
O(t–P–

a ) for a ≥ [t–].

Proof Let τ = [t–]. Then

∣∣∣∣∣
b∑

k=a

P–
k ei(n–k)t

∣∣∣∣∣ =
∣∣∣∣∣eint

b∑
k=a

P–
k e–ikt

∣∣∣∣∣ ≤
∣∣∣∣∣

τ–∑
k=a

P–
k e–ikt

∣∣∣∣∣ +
∣∣∣∣∣

b∑
k=τ

P–
k e–ikt

∣∣∣∣∣;
but ∣∣∣∣∣

τ–∑
k=a

P–
k e–ikt

∣∣∣∣∣ ≤ ∣∣e–iat∣∣∣∣∣∣∣
τ–∑
k=a

P–
k

∣∣∣∣∣ ≤
∣∣∣∣∣

τ–∑
k=

P–
k

∣∣∣∣∣ ≤ τ

p
=O

(
t–

)
,

and, by (.), we have

∣∣∣∣∣
b∑

k=τ

P–
k e–ikt

∣∣∣∣∣ ≤ P–
τ max

τ+≤k≤b

∣∣∣∣ – e–i(k+)t

 – e–it

∣∣∣∣ ≤ P–
τ

∣∣∣∣ eit/

eit/ – e–it/

∣∣∣∣
≤ P–

τ

(


sin(t/)

)
=O

(
t–P–

τ

)
.

Since Pn >  and P–
n ≥ P–

n+ ∀n≥ , we have

t–P–
t– ≤ ([

t–
]
+ 

)
P–
[t–] ≤ P–

[t–] ≤ P–(t–),
and, in case a≥ [t–], we would have

∣∣∣∣∣
b∑

k=a

P–
k e–ikt

∣∣∣∣∣ ≤ P–
a max

a≤k≤b

∣∣∣∣ – e–i(k+)t

 – e–it

∣∣∣∣ ≤ Ct–P–
a =O

(
t–P–

a
)
.

This completes the proof of Lemma . �

Lemma  |(C̃N)n(t)| =O[/t] for  < t ≤ π/(n + ).
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Proof For  < t ≤ π/(n + ), sin(t/)≥ (t/π ) and | cosnt| ≤ .

∣∣(C̃N)n(t)
∣∣ = ∣∣∣∣∣ 

π (n + )

n∑
k=

P–
k

k∑
v=

pν

cos(k – v + /)t
sin t/

∣∣∣∣∣
≤ 

π (n + )

n∑
k=

P–
k

k∑
v=

pν

| cos(k – v + /)t|
| sin t/|

≤ 
t(n + )

n∑
k=

P–
k

k∑
v=

pν

=


t(n + )

n∑
k=

P–
k Pk

=O[τ ].

This completes the proof of Lemma . �

Lemma  Let {pn} be a non-negative sequence satisfying (.), then

∣∣(C̃N)n(t)
∣∣ =O

(
τ 

(n + )
+ τ

)
, uniformly in

π

(n + )
< t ≤ π .

Proof For π/(n + ) < t ≤ π , we have

(C̃N)n(t) =


π (n + )

n∑
k=

P–
k

k∑
v=

pν

cos(k – v + /)t
sin t/

=


π (n + )

(
τ∑

k=

+
n∑

k=τ+

)
P–
k

k∑
v=

pν

cos(k – v + /)t
sin t/

= J̃(n, t) + J̃(n, t), say, (.)

where

∣∣J̃(n, t)∣∣ =
∣∣∣∣∣ 
π (n + )

τ∑
k=

P–
k

k∑
v=

pν

cos(k – v + /)t
sin t/

∣∣∣∣∣
≤ 

π (n + )

τ∑
k=

P–
k

k∑
v=

pν

| cos(k – v + /)t|
| sin t/|

≤ 
t(n + )

τ∑
k=

P–
k

k∑
v=

pν

=O
(

τ 

(n + )

)
, (.)

in view of (sin t/)– ≤ π/t, for  < t ≤ π .

http://www.advancesindifferenceequations.com/content/2013/1/127
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Again, using (sin t/)– ≤ π/t, for  < t ≤ π and changing the order of summation, we
find

∣∣J̃(n, t)∣∣ =
∣∣∣∣∣ 
π (n + )

n∑
k=τ+

P–
k

k∑
v=

pν

cos(k – v + /)t
sin t/

∣∣∣∣∣
≤ 

t(n + )

∣∣∣∣∣
n∑

k=τ+

P–
k

k∑
ν=

pν cos(k – ν + /)t

∣∣∣∣∣
=O

(
τ

n + 

)∣∣∣∣∣
(

τ+∑
ν=

pν

n∑
k=τ+

P–
k cos(k – ν + /)t

+
n∑

ν=τ+

pν

n∑
k=ν

P–
k cos(k – ν + /)t

)∣∣∣∣∣. (.)

Using Lemma , we have∣∣∣∣∣
τ+∑
ν=

pν

n∑
k=τ+

P–
k cos(k – ν + /)t

∣∣∣∣∣
≤

(
τ+∑
ν=

pν

∣∣∣∣∣
n∑

k=τ+

P–
k ei(k–ν)t · eit/

∣∣∣∣∣
)

=
τ+∑
ν=

pν

∣∣∣∣∣
n∑

k=τ+

P–
k ei(k–ν)t

∣∣∣∣∣ =
τ+∑
ν=

pνO
(
τP–

τ+
)
=O(τ ). (.)

Using Abel’s transformation, we obtain

n∑
k=ν

P–
k cos(k – ν + /)t =

n–∑
k=ν

(
�P–

k
) k∑

γ=

cos(k – γ + /)t + P–
n

n∑
γ=

cos(k – γ + /)t

– P–
ν

ν–∑
γ=

cos(k – γ + /)t.

Therefore, we have∣∣∣∣∣
n∑

k=ν

P–
k cos(k – ν + /)t

∣∣∣∣∣
≤

n–∑
k=ν

∣∣�P–
k

∣∣∣∣∣∣∣
k∑

γ=

cos(k – γ + /)t

∣∣∣∣∣ + P–
n

∣∣∣∣∣
n∑

γ=

cos(k – γ + /)t

∣∣∣∣∣
+ P–

ν

∣∣∣∣∣
ν–∑
γ=

cos(k – γ + /)t

∣∣∣∣∣
=O(τ )

( n–∑
k=ν

∣∣�P–
k

∣∣ + P–
n + P–

ν

)
=O(τ )

(
P–
n + P–

ν

)
, (.)

by virtue of the fact that
∑μ

k=λ exp(–ikt) =O(τ ),  ≤ λ ≤ k ≤ μ, and Pn ≥ Pn– ∀n≥ .

http://www.advancesindifferenceequations.com/content/2013/1/127
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On combining (.) to (.), we get

∣∣J̃(n, t)∣∣ =O
(

τ 

n + 

)(
 +

n∑
ν=τ+

pν

(
P–
n + P–

ν

))

=O
(

τ 

n + 

)(
 + P–

n

n∑
ν=

pν +
n∑

ν=τ+

pν

Pν

)

=O
(

τ 

n + 

)(
 +  +

n∑
ν=τ+


ν + 

)
=O

(
τ 

n + 

)(
 +O

(
n – τ

τ + 

))

=O
(

τ 

n + 

)
+O

((
τ 

n + 

)
·
(

n
τ + 

))
=O

(
τ 

n + 
+ τ

)
, (.)

in view of (.) and τ ≤ /t < τ + .
Finally, collecting (.), (.) and (.) yields Lemma .
This completes the proof of Lemma . �

5 Proof of the theorem
Let s̃n(f ;x) denote the partial sum of series (.), then we have

s̃n(f ;x) – f̃ (x) =

π

∫ π


ψx(t)

cos(n + /)t
sin t/

dt.

Denoting C ·Np means of {s̃n(f ;x)} by t̃CNn , we write

t̃CNn (f ;x) – f̃ (x) =
∫ π


ψx(t)


π (n + )

n∑
k=

P–
k

k∑
ν=

pν

cos(k – v + /)t
sin t/

dt

=
∫ π


ψx(t)(C̃N)n(t)dt

=
[∫ π/(n+)


+

∫ π

π/(n+)

]
ψx(t)(C̃N)n(t)dt = I + I (say) (.)

If f (x) ∈ Lipα, then∣∣ψx(t + h) –ψx(t)
∣∣ = ∣∣f (x + t + h) – f (x + t) + f (x – t) – f (x – t – h)

∣∣
≤ ∣∣f (x + t + h) – f (x + t)

∣∣ + ∣∣f (x – t) – f (x – t – h)
∣∣

≤ C|h|α .

Therefore ψx(t) ∈ Lipα.
Now, using Lemma , we have

|I| =O
(∫ π/(n+)


tα · 

t
dt

)
=O

(
(n + )–α

)
. (.)

Using Lemma , we obtain

|I| =O
{∫ π

π/(n+)
tα

(
τ 

n + 
+ τ

)
dt

}
=O(I) +O(I), say, (.)

http://www.advancesindifferenceequations.com/content/2013/1/127
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where

I =


n + 

∫ π

π/(n+)
tα– dt =

{
O((n + )–α),  < α < ,
O( log(n+)n+ ), α = ,

(.)

and

I =
∫ π

π/(n+)
tα– dt =O

(
(n + )–α

)
. (.)

On combining (.) with (.) and using the inequality /(n + ) ≤ log(n + )/(n + ), for
higher values of n, we have

∣∣t̃CNn (f ;x) – f̃ (x)
∣∣ = {

O((n + )–α),  < α < ,
O( log(n+)n+ ), α = .

Hence,

∥∥t̃CNn (f ;x) – f̃ (x)
∥∥∞ = sup

≤x≤π

∣∣t̃CNn (f ;x) – f̃ (x)
∣∣ = {

O((n + )–α),  < α < ,
O( log(n+)n+ ), α = .

This completes the proof of Theorem ..

6 Conclusion
Several results concerning the degree of approximation of periodic signals (functions) be-
longing to the Lipschitz class by Matrix Operator have been reviewed and the condition
of monotonicity on the generating sequence {pn} has been relaxed. Further, a proper set
of conditions has been discussed to rectify the errors and applications pointed out in
Remarks  and . Some interesting applications of the operator used in this paper were
pointed out in Note .
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