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Abstract

In this paper, we present the theoretical research results of certain characteristics of
the generalized hyperspherical function with two degrees of freedom as
independent dimensions. Here, we primarily give the answers to the quantification of
dimensional potentials (fluxes) of this function in the domain of natural numbers. In
addition, we also give the solutions to continual fluxes of separate contour
hyperspherical (HS) functions. The symbolical evaluation and numerical verification of
the values of series and integrals are realized using MathCAD Professional and
Mathematica.
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1. Introduction
The hypersphere function is a hypothetical function related to multi-dimensional space

(see [1-3]). The most important aspect of this function is its connection to all func-

tions that describe the properties of spherical entities: points, diameter, circumference,

circle, surface, and volume of a sphere. The second property is the generalization of

these functions from discrete to continuous. It belongs to the group of special func-

tions, so its testing is being performed on the basis of known functions such as

gamma (Γ), psi (ψ), and the like, so that its generalized, explicit form is the following

[4].

Definition 1.1. The hyperspherical function [5]with two degrees of freedom k and n is

defined as

HS(k,n, r) =
2
√

π krk+n−3�(k)

�(k + n − 2)�

(
k
2

) (k,n ∈ Z, r ∈ N) ,
(1:1)

where Γ(z) is the gamma function.

Using the fundamental properties of the gamma function, we advance from the

domain of the natural values analytically to the set of real values for which we form

the conditions for both its graphical interpretation and a more concise mathematical

analysis. It is developed on the basis of two degrees of freedom k and n as vector

dimensions, in addition to radius r, as an implied degree of freedom for every

Letic et al. Advances in Difference Equations 2012, 2012:22
http://www.advancesindifferenceequations.com/content/2012/1/22

© 2012 Letic et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

mailto:iwtbg@beotel.net
mailto:iwtbg@beotel.net
http://creativecommons.org/licenses/by/2.0


hypersphere. The dominant theorem is the one that relates to the recurrent property of

this function [6].

It implies that the vectors on the left (n = 2, 1, 0, -1, -2,...) of the matrix M[HS]kxn
(1.3) are obtained on the base of the reverent vector (n = 3) deduction, and the vectors

on the right (n = 4, 5, 6, 7, 8,...) on the base of integrals by radius r [7].

∂

∂r
HS(k,n, r) = HS(k,n − 1, r) andHS(k,n + 1, r) =

r∫
0

HS(k,n, r)dr. (1:2)

For the development of the hyperspherical functions theory see Bishop [8], Conway

[1], Dodd and Coll [2], Hinton [9], Hocking and Young [10], Manning [3], Maunder

[11], Neville [12], Rohrmann and Santos [13], Satoshi et al. [14], Sloane [15], Rucker

[16], Sommerville [17], Weels [18], Joshi and Sadan [19], Kabatiansky [20], Letić and

all [21], Loskot and Norman [22], Sasaki [23], Tu and Fischbach [24], Woonchul and

Zhou [25], and for its testing, see Ramanujan and Hardy [26]. Today the research of

hyperspherical functions is represented both in Euclid’s and Riemann’s geometries and

topologies (Riemann’s and Poincare’s spheres, multidimensional potentials, theory of

fluids, atomic physics, hyperspherical black holes, so on) (Figures 1, 2).

M[HS]kxn = (1:3)

Figure 1 The submatrix HS(k, n, r) of the function for k Î -3, -2,...5 and n Î -2, -1,...6 with six
highlighted characteristics functions (undef. are undefined values, most commonly singular ± ∞ of
this function value).
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2. Dimensional potentials–the fluxes of HS function
2.1. Vertical dimensional flux of hypersphere function

Definition 2.1. The discrete dimensional potential or the hypersphere function flux is

the sum of all separate functions in the (sub)matrix of this function that we expand for

integer or real degrees of freedom (1.3).

Formally, this flux can be quantified by twofold series that covers this area of the HS

function. The first phase is to define the value of infinite series of functions classified

in columns (vectors) of the submatrix M[HS]kxn (k, n ÎN). This is also the definition

of vertical dimensional fluxes of HS function. The first value to be calculated relates to

the fourth columns (n = 3) of this submatrix (1.3). From this, we obtain

∞∑
k=0

HS(k, 3, r) = 1 + 2r + πr2 +
4
3

πr3 +
1
2

π2r4 +
8
15

π2r5 + · · · + ε

(
2
√

π krk

k�(k/2)

)
.

Freden [27] has precisely defined this series with the value

∞∑
k=0

HS(k, 3, r) =
∞∑
k=0

2
√

π krk

k�(k/2)
= eπ r2 [

1 + erf (r
√

π)
]
, (2:1)

where erf(z) is an error function. When k is even (0,2,4,...), respectively, odd (1,3,5,...),

that series can be classified as dichotomous, so we obtain two complementary series

∞∑
k=0

HS(k, 3, r) =
∞∑

k=0,2,4, ...

HS(k, 3, r) +
∞∑

k=1,3,5, ...

HS(k, 3, r) = eπ r2 + eπ r2erf (r
√

π).

Figure 2 The 3D hyperspherical function for the unitary radius HS(-1 ≤ k ≤ 5, -4 ≤ n ≤ 4, 1) and the
coordinates of real spherical entities.
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Consequently, Freden’s result [27] can be presented in the form of series with even

(k = 2b) and odd members (k = 2b+1, where b ÎN). In this sense we get

eπ r2 =
∞∑
b=0

π br2b

b!
and eπ r2 erf (r

√
π) =

∞∑
b=0

π b(2r)2b+1b!
(2b + 1)!

.

On the base of Freden’s solution (2.1), as a starting point and applying the recurrent

relations (1.2), we get values for lower degrees of freedom (n < 3). We connect the

sphere hypervolume (n = 3) with its hypersurface (n = 2). In this sense a new vector

flux follows

∂

∂r

∞∑
k=0

HS(k, 3, r) =
∞∑
k=0

HS(k, 2, r), so then is
∞∑
k=0

HS(k, 2, r) = 2
[
1 + π r eπ r2erfc(−r

√
π)

]
.

For hypersphere (n = 1), a series is obtained in view of the previous, therefore

∂

∂r

∞∑
k=0

HS(k, 2, r) =
∞∑
k=0

HS(k, 1, r) = 2π
[
2r + eπ r2 (1 + 2πr2)erfc(−r

√
π)

]

For n = 0, the series value is found on the basic of deducing, so it follows that

∞∑
k=0

HS(k, 0, r) = 8π2
[
reπ r2 (

3
2
+ πr2)erfc(−r

√
π) + r2 + π−1

]
.

For degrees of freedom higher than n = 3, series are found by inverse operations, i.e.,

by recurrent relation in view of integrating along radius r. Consequently,

∞∑
k=0

HS(k,n + 1, r) =

r∫
0

( ∞∑
k=0

HS(k,n, r)

)
dr,

so for the fourth dimension the following integral form is applied

∞∑
k=0

HS(k, 4, r) =

r∫
0

( ∞∑
k=0

HS(k, 3, r)

)
dr =

r∫
0

eπ r2 [
1 + erf (r

√
π)

]
dr.

This property refers also to the complementary dichotomous hyperspherical series.

In that case, we have for even members

∞∑
k=0,2,4,...

HS(k, 4, r) =

r∫
0

⎛
⎝ ∞∑

k=0,2,4,···
HS(k, 3, r)

⎞
⎠ dr.

So for the fourth dimension an integral form with imaginary error function is

obained using erf(z) = -ierf(iz).

∞∑
k=0,2,4,...

HS(k, 4, r) =

r∫
0

eπ r2dr = − i

2
erf (r

√−π) =
erfi(r

√
π)

2
.

After the partial integration using
∫

udv = uv −
∫

vdu we obtain the integral for

“odd” series
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∞∑
k=1,3,5,...

HS(k, 4, r) =

r∫
0

erf (r
√

π) eπ r2dr =
erfi(r

√
π) erf (r

√
π)

2
−

r∫
0

e−π r2erfi(r
√

π)dr,

where u = erf (r
√

π) and dv = eπ r2dr . The addend with the integral on the right side

is analytically solvable and it amounts to, e.g., the series with “b“ members (or as a ser-

ies with the incomplete gamma function). In that sense, the value of the series with

even numbers is

∞∑
k=0,2,4,...

HS(k, 4, r) =
∞∑

k=0,2,4, ...

√
π krk+1

(k + 1)(k/2) !
=

∞∑
b=0

π br1+2b

(2b + 1)b!
,

while the series for odd numbers is defined as

∞∑
k=1,3,....

HS(k, 4, r) =
∞∑

k=1,3, ...

2k
√

π k−1rk+1

(1 + k)!

(
k − 1
2

)
! ≡

∞∑
b=0

21+2bπ br2(1+b)b!
(2 + 2b)!

.

So, the analytical values of these dichotomous series are

r∫
0

eπ r2 [
1 + erf (r

√
π)

]
dr =

r∫
0

eπ r2dr+

r∫
0

eπ r2erf (r
√

π)dr =
erfi(r

√
π)

2
+

∞∑
b=0

21+2bπ bb!r2(1+b)

(2 + 2b)!
. (2:2)

2.2. Integral solvability on the base of the incomplete gamma function

The flux for n = 3 is the easiest one to solve, and it represents the base for calculating

fluxes of higher degrees of freedom (n > 0), through integration of previously obtained

results. In that sense, this procedure is possible by using the series where the incom-

plete gamma function. The second integral (2.2) is reduced to known terms, and one

among them is [28]

∫
ebz

2
erf (az)dz =

1
b
√

π

∞∑
k=0

a2k+1�(k + 1,−bz2)
bk(2k + 1)k!

+ C.

Integral in its definite form is expressed as

r∫
0

eπ r2 [
1 + erf (r

√
π)

]
dr =

erfi(r
√

π)
2

+
1
π

∞∑
k=0

�(k + 1,−πr2) − �(k + 1, 0)
(1 + 2k) k!

.

While the incomplete gamma function is in general case equal to

�(a, z) =

∞∫
z

ta−1e−tdt [29]. It is obvious that the two obtained series with odd members

are equivalent to the following

1
π

∞∑
k=0

�(k + 1,−πr2) − �(k + 1)
(1 + 2k)k!

≡
∞∑
b=0

21+2bπ br2(1+b)b!
(2 + 2b)!

.
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Defining the series for n = 5 is realized by integrating the expressions

∞∑
k=0

HS(k, 5, r) =

r∫
0

erfi(r
√

π)
2

dr +

r∫
0

⎛
⎝ ∞∑

k=1,3,...

2k
√

π k−1rk+1

(1 + k)!

(
k − 1
2

)
!

⎞
⎠ dr. (2:3)

The first integral on the right side of (2.3) is solved on the bases of the known equal-

ity
∫

erfi(az) = z · erfi(az) − e(a z)
2

a
√

π
, where a z = r

√
π . Thus, the integral is obtained as

r∫
0

erfi(r
√

π)
2

dr =
1
2

(
r · erfi(r√π) − eπ r2

π

) ∣∣∣∣∣
r

0

=
1 − eπ r2 + πrerfi(r

√
π)

2π
.

However, a simpler way is to use both even and odd dichotomous series. Now, we

obtain

∞∑
k=0,2,...

HS(k, 5, r) =

r∫
0

( ∞∑
b=0

π br2b+1

(2b + 1)b!

)
dr =

1
2

∞∑
b=0

π br2(b+1)

(2b + 1)(b + 1)!
,

respectively

∞∑
k=1,3,...

HS(k, 5, r) =

r∫
0

( ∞∑
b=0

21+2bπ bb!r2(b+1)

(2 + 2b)!

)
dr =

∞∑
b=0

21+2bπ bb!r2b+3

(3 + 2b)!
.

The sum of results on the base of the integral value and one series is

∞∑
k=0

HS(k, 5, r) =
1 − eπ r2 + πr erfi(r

√
π)

2π
+

∞∑
b=0

21+2bπ bb!r2b+3

(3 + 2b)!

or with two complementary series

∞∑
k=0

HS(k, 5, r) =
∞∑
k=1

√
π krk+2

(k + 1)(k + 2)�
(
k
2
+ 1

) =
1
2

∞∑
b=0

π br2(b+1)

(2b + 1)(b + 1)!
+

∞∑
b=0

21+2bπ bb!r2b+3

(3 + 2b)!
.

The dichotomous series for n = 6 is

∞∑
k=0

HS(k, 6, r) =
∞∑
k=0

√
π krk+3 �(k + 1)

�(k + 3)�
(
k
2
+ 1

) =
∞∑
b=0

21+2bπ bb!r2(b+2)

(4 + 2b)!
+
1
2

∞∑
b=0

π br2b+3

(2b + 1)(2b + 3)(b + 1)!
.

Note: Integration, similar as in the previous cases, is applied with certain conditions,

so we have, e.g.,

r∫
0

r2b+3dr = 0, if -1 < 2Re(b) + 3 < -1^b ≠ -1^r = ∞. If the conditions

are not met, this integral is indefinite. Some values of these discrete and continuous

fluxes (for r = 1) are given in Table 1.

Suppose that the values of the vector fluxes decline with the increase of the degree of

freedom n. The dimensional fluxes can be studied as well for the complex part. So, for

example, with the recurrence we get the series values for the negative degree of
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freedom n = -2, as [30].

∞∑
k=0

HS(k,−2, r) = 8π3
{
reπ r2erfc(−r

√
π)[15 + 4πr2(5 + πr2)] + 2r2(9 + 2πr2) + 8π−1

}
.

2.3. Fluxes on the base of hypersphere matrix series

The discrete dimensional fluxes can be calculated as well “horizontally”, i.e., by adding

function values along the M[HS]kxn submatrix series. For example, by expanding the

series for k = 3, the flux would contain the following members

∞∑
n=0

HS(3, n, r) = 8π + 8πr + 4πr2 +
4
3

πr3 +
1
3

πr4 +
1
15

πr5 + . . . + ε

(
8πrn

�(n + 1)

)
.

Some values of discrete and continual fluxes, (for r = 1), are given in Table 2.

2.4. Some continuous fluxes

The distribution trend of vector fluxes is increasing, followed by asymptotic decrease

with linear growth of degree of freedom n. From the standpoint of functional analysis,

the most interesting series of the matrix M[HS]k, n is the one that relates to the

degrees of freedom k = 2 and k = 3. The first series includes the known functions for

the circumference (2πr) and the surface of circle (πr2). The members of the second

series are the surface functions (4πr2) and sphere volume (
4
3

π r3). The same series are

interesting as well for continuous fluxes. The continuous natural flux for the

Table 1 Values of discrete and continuous fluxes.

Degree of freedom (n)

∞∑
k=0

HS(k,n, 1) ≈
∞∫
0

HS(k,n, 1)dk ≈

0 16962.1740457 16962.3520362

1 2117.56926532 2117.48007283

2 291.022289825 291.104223905

3 45.9993260894 45.5712471365

4 8.71952109668 8.20993584833

5 1.87596579993 1.60128605246

6 0.40326040109 0.30739217922

7 0.07910676340 0.05435115208

8 0.01367865325 0.00860415949

9 0.00207449183 0.00121196056

10 0.00027764247 0.00015240808

11 0.00003309744 0.00001722662

12 0.00000354778 0.00000176333
...

...
...

∞ lim
n→∞

∞∑
k=0

HS(k,n, r) = 0 lim
n→∞

∞∫
0

HS(k,n, r)dk = 0

�
n 19427.858848843922 -
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hypersphere surface is analyzed on the base of integrals, instead of series. This integral

is specific, because its subintegral function is the reciprocal gamma function. Its value,

as it is known, is equal to the value of Fransen-Robinson constant [31]

F =

∞∫
0

1
�(x)

dx = e +

∞∫
0

e−n

π2 + ln2n
dn ≈ 2.8077702420285.

Table 2 Values of discrete and continual fluxes

Degree of freedom
(k)

∞∑
n=0

HS(k,n, r) =
∞∑
n=0

HS(k,n, 1) ≈
+∞∫
0

HS(k,n, 1)dn ≈

0 er 2.71828182846 2.89982256317

1 2er 5.43656365692 5.24809906025

2 2πer 17.0794684453 17.6417407306

3 8πer 68.3178737814 56.964225268

4 12π2(er-1) 203.505142758 139.918441638

5 64π2(er-r-1) 453.706079704 271.32230045

6 60π3[2er-(r+1)2-1] 812.172812098 437.960809928

7 ∞∑
n=0

768π3rn+4

�(n + 5)

1229.10258235 611.722905550

8

∞∑
n=0

1680π4rn+5

�(n + 6)

1628.04409715 759.633692941

9

∞∑
n=0

12288π4rn+6

�(n + 7)
1933.28876014 855.051695653

10

∞∑
n=0

30240π5rn+7

�(n + 8)
2093.93742907 884.975895298

11

∞∑
n=0

245760π5rn+8

�(n + 9)
2095.29352414 851.441651487

12

∞∑
n=0

665280π6rn+9

�(n + 10)
1956.27052708 768.011397877

13

∞∑
n=0

5898240π6rn+10

�(n + 11)
1717.51550066 653.938458847

...
...

...
...

50

∞∑
n=0

HS(50,n, r) 0.00000002078 0.00000000526

...
...

...
...

∞ lim
k→∞

∞∑
n=0

HS(k,n, r) = 0 0 lim
k→∞

∞∫
0

HS(k,n, r)dn = 0

�
k

19427.858848843922 -
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The integral value of the flux in question is now
∞∫
0

HS(2,n, 1)dn =
∞∑
n=0

HS(2,n, 1) +

∞∫
0

2πe−n

π2 + ln2n
dn or, namely, for unit radius

∞∫
0

2π

�(n)
dn = 2π

⎛
⎝e +

∞∫
0

e−n

π2 + ln2n
dn

⎞
⎠ = 2π F ≈ 17.641741. (2:4)

Regarding the continuous dimension n, a more general dimensional volume hyper-

sphere flux follows on the base of Ramanujan-Hardy’s integral [26].

∞∫
0

yx

�(x + 1)
dx = ex −

∞∫
0

e−xz

x(π2 + ln2x)
dx.

Figure 3 (a) The representative submatrix. Figure 3. (b) The addition principle of the matrix on
diagonal.
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Ramanujan defined this integral and Hardy “deepened” it analytically. In that sense,

the previous expression can be applied on flux calculation, as

∞∫
0

8πrn

�(n + 1)
dn = 8π

⎛
⎝er −

∞∫
0

e−nr

n(π2 + ln2n
dn

⎞
⎠ .

The integral can be defined as the difference of series and integral with the value (for

r = 1),

∞∫
0

8π rn

�(n + 1)
dn =

∞∑
n=0

8π rn

�(n + 1)
−

∞∫
0

8πe−nr

n(π2 + ln2n)
dn

∣∣∣∣∣∣
r=1

≈ 56.96423. (2:5)

2.5. Vector flux series

Total dimensional flux of the degree of freedom in the domain of natural numbers is

obtained as the result of twofold amount by which integer values of hyperspherical

function HS(k,n,r), (k, n, r ≥ 0) are respected. This twofold series has to be convergent,

and this property is in the function of hypersphere radius. As usual, calculating of total

discrete flux is being performed with its unit value and the convergence is in that case

provided, taking into consideration that the unit series on that condition are conver-

gent. The flux can be considered also for each column M[HS]k, n of the matrix, sepa-

rately. So, we have for the nth column (denoted by <n >), the flux in the following

form

�<n>
HS (k,n, r) =

∞∑
k=0

HS(k,n, r).

2.6. Orthogonal dimensional flux

These fluxes are all columns or M[HS]k, n. As the number of columns, respectively,

series, is infinite, we introduce the following definition for the total flux.

Definition 2.1. The dimensional flux of the functional matrix with two degrees of

freedom k and n is defined as a double series

�HS(k,n, r) =
∞∑
n=0

�<n>
HS (k,n, r) =

∞∑
n=0

∞∑
k=0

HS(k,n, r).

As the defined number of members is calculated, the flux has the form

�HS(k,n, r) =
∞∑
n=0

∞∑
k=0

HS(k,n, r) = 8π2
[
reπ r2 (3/2 + πr2) erfc(−r

√
π) + r2 + π−1

]

+2π
[
2r + eπ r2 (1 + 2π r2) erfc(−r

√
π)

]
+ 2

[
1 + π reπ r2 erfc(−r

√
π)

]
+ eπ r2erfc(−r

√
π)

+
erfi(r

√
π)

2
+

∞∑
b=0

21+2bπ bb!r2(1+b)

(2 + 2b)!
+
1 − eπ r2 + π r erfi(r

√
π)

2π
+

∞∑
b=0

21+2bπ bb!r2b+3

(3 + 2b)!
+ · · ·

The flux along the matrix series in the domain of natural numbers is defined as a

twofold series, but with the summing order changed. This dimensional flux is defined

as (2.3.4)
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�HS(k,n, r) =
∞∑
k=0

∞∑
n=0

HS(k,n, r). (2:6)

On the basis of the previously fixed members, the matrix flux has the form

�HS(k,n, r) =
∞∑
k=0

∞∑
n=0

HS(k,n, r) = er + 2er + 2π er + 8π er + 12π2(er − 1) + 64π2(er − r − 1)

+60π3
[
2er − (r + 1)2 − 1

]
+ 128π3 [

6(er − r − 1) − r2(r + 3)
]

+70π4 [
24(er − r − 1) − r2(r2 + 4r + 12)

]
+

∞∑
n=0

12288π4rn+6

�(n + 7)
+ · · ·

The equivalency of orthogonal dimensional fluxes implies equality of twofold series

�HS(k,n, r) = �HS(k,n, r).

So, e.g., for r = 1 dimensional fluxes have unambiguous numerical value

�HS(k,n, 1) = �HS(k,n, 1) ≈ 19427.85884884322.

Table 3 The polinomial coefficients

v av-the polynomial coefficients

∑
v

av r
v

0 3 + 10π

1 3 + 10π +12π2

2
3
2
+ 5π + 38π2

3
1
2
+
5π

3
+
38π2

3
+ 20π3

4
1
8
+
5π

12
+
19π2

6
+ 37π3

5
1
40

+
π

12
+
19π2

30
+
37π3

5
+ 14π4

6
1

240
+

π

72
+
19π2

180
+
37π3

30
+
97π4

5

7
1

1680
+

π

504
+
19π2

1260
+
37π3

210
+
97π4

35
+ 6π5

8
1

13440
+

π

4032
+

19π2

10080
+
37π3

1680
+
97π4

280
+
575π5

84

9
1

120960
+

π

36288
+

19π2

90720
+

37π3

15120
+
97π4

2520
+
575π5

756
+
11π6

6

10
1

1209600
+

π

362880
+

19π2

907200
+

37π3

151200
+

97π4

25200
+
115π5

1512
+
2279π6

1260

11 1
13305600

+
π

3991680
+

19π2

9979200
+

37π3

1663200
+

97π4

277200
+
115π5

16632
+
2279π6

13860
+
13π7

30

12 1
159667200

+
π

47900160
+

19π2

119750400
+

37π3

19958400
+

97π4

3326400
+
115π5

199584
+
2279π6

166320
+
905π7

2376
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2.7. The application of the recurring operators at defining diagonal dimension fluxes

In the previous analysis, the defining of the dimensional fluxes of the HS matrix was

performed on the basis of addition of the HS function values on the columns, in regard

to the series of the HS matrix. The more detailed analysis would be very large scale,

including the exponential function, error functions erf(z), erf(z), the incomplete gamma

function Γ(a, z), etc. When we use the idea of the transition operators from the refer-

ence function into the defining HS function in the functional hyperspherical matrix,

we can also establish the values of the dimensional fluxes on the diagonals (Figure 3),

whose sum would present the overall flux for the matrix where the degree of freedom

is in the domain of natural numbers, i.e., k, n ÎN. Such matrix contains an infinite

number of elements. For the reference functions, we take HS functions on the posi-

tions of the first series of the matrix, and they are the so-called zero HS functions: HS

(0,0,r), HS(0,1,r),...,HS(0,n,r),... The defining functions are placed according to the “gra-

dual” law of growth (+Δk) and decline (-Δn).

Definition 2.2. The flux operator of the series ϑ(Δk, Δn, 0) is defined by the quotient

[4]

ϑ(
k,
n, 0) =
HS(k + 
k,n + 
n, r)

HS(k,n, r)
=

√
π
kr
k+
n �(k + n − 2)�(k + 
k)

�(k)�(k + n + 
k + 
n − 2)�

(
k + 
k

2

)�

(
k
2

)
.

Also as the absolute values of the increments are equal and unique, that is |Δk| =

|-Δn| = 1, a new joint argument u (Δk = Δn = u) is assigned to them. In addition to

the starting value of the kth degree of freedom is k = 0, the operator theta becomes

(2.4)

θ(u,−u, 0) = 2
√

πu
�(u)

�(u/2)
.

The assigning function is now being calculated as

HS(u,n − u, r) = θ(u,−u, 0) · H(0, n, r) =
2
√

πurn−3 �(u)
�(n − 2)�(u/2)

.

The dimensional flux on the diagonal presents the sum of its individual members.

So, for the first diagonal (denoted by < 0 >) the flux is equal to

�<0>(k,n, r) = HS(0, 0, r) = 0,

for the second, we have

�<1>(k,n, r) = HS(0, 1, r) +HS(1, 0, r) = 0

for the third

�<2>(k,n, r) = HS(0, 2, r) +HS(1, 1, r) +HS(2, 0, r) = 0,

and for the fourth

�<3>(k,n, r) = HS(0, 3, r) +HS(1, 2, r) +HS(2, 1, r) +HS(3, 0, r) = 3 + 10π .
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The flux in the nth diagonal would be calculated in the form of a sum

�<n>(k,n, r) =
n∑

u=0

HS(u,n − q, r) =
2rn−3

�(n − 2)

n∑
u=0

√
πu �(u)
�(u/2)

(n �= 2). (2:7)

The flux for the value n = 2 is calculated on the basis of the function limit value.

Respecting that

�(u)
�(u/2)

=
2u−1

√
π

�

(
u + 1
2

)
,

the expression for the flux of the nth diagonal, after reordering, can get a new form,

and it is equivalent to the expression (2.7)

�<n>(k,n, r) =
rn−3

�(n − 2)

n∑
u=0

2u
√

πu−1 �

(
u + 1
2

)
.

So, for the fifth diagonal (n = 4) we get

�<4>(k,n, r) =
n∑

u=0

HS(u,n − u, r) = r (10π + 12π2 + 3).

For the sixth diagonal (n = 5) it follows that

�<5>(k,n, r) =
n=5∑
u=0

HS(u,n − u, r) =
r2

2
(10π + 76π2 + 3).

As the number of diagonals is infinite, the total flux is formed as the series of all

diagonal fluxes

�HS(k,n, r) =
∞∑
n=0

�<n>(k,n, r)

namely

�HS(k,n, r) =
∞∑
n=0

n∑
u=0

HS(u,n − u, r) =
∞∑
n=0

(
2rn−3

�(n − 2)

n∑
u=0

√
πu �(u)
�(u/2)

)
.

For example, approximately, the flux for r = 1 and r = 12 we obtain

�HS(k, 12, 1) =
98641
1096

+
493205
18144

π+
604099
9072

π2+
99541
1512

π3+
46061
1260

π4+
5143
378

π5+
11
6

π6.

In the expanded form, the total flux has the polynomial structures of members

�HS(k,n, r) = 3 + 10π + r (10π + 12π2 + 3) + r2(5π + 38π2 +
3
2
)+

r3(
5π

3
+
38
3

π2 + 20π3 +
1
2
) + r4(

5π

12
+
19
6

π2 + 37π3 +
1
8
)+

r5
(

π

12
+
19
30

π2 +
37
5

π3 + 14π4 +
1
40

)
+ r6

(
π

72
+

19
180

π2 +
37
30

π3 +
97
5

π4 +
1

240

)
+ · · ·

The diagonal flux of the hyperspherical function can be expressed by the series of

the general form
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�HS(v, r) =
∞∑
v=0

av r
v.

Here, v is a summing index by which the sequence of the matrix elements from left

to right and from above to down along the diagonal is taken into consideration. The

polynomial coefficients contain rational numbers and the graded constant π. The first

three coefficients are zero, so they are not included in the summation sequence. Its

other values (v = 0, 1,...,13) are given in Table 3

The approximation of the series with 16 coefficients in decimal notation has the

form:

15∑
v=0

av r
v ≈ 0 + 0 + 0 + 34.42 + 152.85 r + 392.25 r2 + 750.88 r3 + 1179.92 r4 + 1599.71 r5

+1929.07 r6 + 2111.7 r7 + 2129.23 r8 + 1999.13 r9 + 1762.55 r10 + 1469.03 r11 + 1163.76 r12.

Approximately, the double series leads to the solution that is very close to the exact

one. Namely, for the unique radius and reducing to ∞ ~ n = 30 the double series of

the diagonal flux gets the following structure:

�HS(u,n, 1) ≈
n=30∑
n=0

n∑
u=0

HS(u,n − u, r)

=
739975398988375932899873137
90740578753486268006400000

+
739975398988375932899873137
27222173626045880401920000

π +
238514305877004451811873137
3581864950795510579200000

π2+

746729898421689857416906069
11342572344185783500800000

π3 +
69115170440329813663374289
1890428724030963916800000

π4 +
13502017230377428308337
986310638624850739200

π5+

361197664753904472319223
94521436201548195840000

π6 +
228408779952457540837
270061246290137702400

π7 +
522026543218088839027
3375765578626721280000

π8+

644267815110873757
26791790306561280000

π9 +
20316656463704383

6251417738197632000
π10 +

66173656244567
170493211041753600

π11 +
655224179171

15786408429792000
π12+

21951111737
5464525994928000

π13 +
2769843971

7806465707040000
π14 +

29
1556755200

π15 ≈ 19427,315.

The diagonal dimensional flux is characteristic with coefficients that contain πn con-

stant in the degrees of the series members, in contrast to vertical fluxes with the domi-

nation of function errors, where π and e are constants. The horizontal fluxes, as it was

presented in (2.6), contain exponential functions. In the meantime, the total flux for

the unique radius is convergent and can be calculated with considerably greater value

�HS(k,n, 1) ≈ 19427.858848843922,

while, e.g., for r = 2 the flux value is substantially greater and its value is obtained as

ΠHS ≈ 1375905492.377.

3. Conclusion
On the basis of the assumption of the recurrent relations (1.2) that exist within the

hyperspherical function (1.1), we can calculate a discrete dimensional flux of this func-

tion in the domain of natural integer degrees of freedom. Quantitative flux value

depends on the nominated value of the hypersphere radius. Meanwhile, as the function

HS(k,n,r) is the function of three variables, its dependence is certainly also a variable k,

respectively, n. In this article, we calculated several continual fluxes (2.4) and (2.5), for

contour hyperspherical function, on the basis of Ramanujan-Hardy’s integral. The

dimensional flux calculating with diagonal algorithm is much simpler and faster to per-

form on a computer, because the total flux is now defined as convergent-graded series

and it does not contain special functions as components. In any case its value is

Letic et al. Advances in Difference Equations 2012, 2012:22
http://www.advancesindifferenceequations.com/content/2012/1/22

Page 14 of 16



identical with the fluxes that are calculated on the base of series, i.e., the HS matrix

columns, so there is a numerically verified statement that

�HS(k,n, r) = �HS(k,n, r) = �HS(k,n, r)
∣∣
r=1 ≈ 19427.858848843922.

The flux calculating procedure originates from Freden when he defined it in 1993 as

the series of hyperspherical functions that refer to the degree of freedom k = 3. In that

case, we obtain the solution [20].

∞∑
k=0

HS(k, 3, r) =
∞∑
k=0

√
π k rk

�

(
k
2
+ 1

) = eπ r2 erfc(−r
√

π).

This function belongs to the family of Mittag Feffler’s-type functions, which he

developed already in the early 20th century [32]. In any case, this solution is initial for

solving the other dimensional fluxes, both for hyperspherical and for hypercubic, in

other words the hyper-cylindrical function [33]. With continuous flux in the domain

k,n ∈ 0,∞ , the problem is considerably more complex, because for its defining, the

double integration (3.1) must be performed. It is supposed that its value is very close

to discrete flux that is obtained on the base of twofold series. Total dimensional con-

tinual flux (k, n ÎN) of the unit hyperspherical function HS(k,n,1) is equal to the value

of twofold integral

∞∫
0

∞∫
0

2
√

π krk+n−3�(k)

�(k + n − 2)�

(
k

2

) dkdn, (3:1)

and its solution can be looked for on numerical bases.
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