SpringerOpen Newsletter

Receive periodic news and updates relating to SpringerOpen.

Open Access Research

Qualitative behavior of a host-pathogen model

Qamar Din*, Abdul Qadeer Khan and Muhammad Naeem Qureshi

Author Affiliations

Department of Mathematics, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan

For all author emails, please log on.

Advances in Difference Equations 2013, 2013:263  doi:10.1186/1687-1847-2013-263

The electronic version of this article is the complete one and can be found online at: http://www.advancesindifferenceequations.com/content/2013/1/263


Received:23 April 2013
Accepted:29 July 2013
Published:29 August 2013

© 2013 Din et al.; licensee Springer

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper, we study the qualitative behavior of a discrete-time host-pathogen model for spread of an infectious disease with permanent immunity. The time-step is equal to the duration of the infectious phase. Moreover, the local asymptotic stability, the global behavior of unique positive equilibrium point, and the rate of convergence of positive solutions is discussed. Some numerical examples are given to verify our theoretical results.

MSC: 39A10, 40A05.

Keywords:
difference equations; local stability; global character

1 Introduction

It is a well-known fact that in the population growth, the disease is an important agent controlling the population dynamics. Many experiments show that parasites can reasonably reduce the host population and even take the host population to complete annihilation. This natural phenomenon is successfully modeled by many simple SI type host-parasite models. The most interesting properties of such models are their ability of generating host annihilation dynamics with the ideal parametric values and initial conditions. This is possible, because such models naturally contain the proportion transmission term, which is often referred to as ratio-dependent functional response in the case of predator-prey models. In the SI model, the population is subdivided into two classes, susceptibles S and infectives I. The notation SI means that there is a transfer from the susceptible to infective class, susceptibles become infective and do not recover from the infection. Thus, the transfer continues until all individuals become infected. This type of model is very simple, but may represent some complicated dynamical properties. Most of the SI type models consist of the mass action principle, i.e., the assumption that the new cases arise in a simple proportion to the product of the number of individuals which are susceptible and the number of which are infectious. However, this principle has a limited validity and in the discrete models, this principle leads to biologically irrelevant results, unless some restrictions are suggested for the parameters. It is more appropriate for discrete epidemic models to include an exponential factor in the rate of transmission. Exponential difference equations can be used to study the models in population dynamics [1-3]. We consider here a simple exponential discrete-time host-pathogen model for spread of an infectious disease with permanent immunity. The time-step is equal to the duration of the infectious phase. The state variables are <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M1','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M1">View MathML</a>, the number of susceptible individuals at time n, and <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M2','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M2">View MathML</a> representing the number of individuals, getting the disease (new cases) between times <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M3','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M3">View MathML</a> and n,

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M4','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M4">View MathML</a>

(1)

where β is the number of births between n and <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M5','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M5">View MathML</a>, all added to the susceptible class and assumed to be constant over time. So, the difference equation <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M6','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M6">View MathML</a> is just a ‘conservation of mass’ for the susceptible class. The first part <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M7','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M7">View MathML</a> of the model is just like Nicholson-Bailey; it comes from assuming that each susceptible escapes infection with probability <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M8','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M8">View MathML</a>; the more infectives there are, the lower the chance of escape. The model ignores mortality in the susceptible class, on the assumption that everyone gets the disease while young, and mortality occurs later in life.

Many ecological competition models are governed by differential and difference equations. We refer to [4,5] and the references therein for some interesting results, related to the global character and local asymptotic stability. As it is pointed out in [6,7], the discrete time models governed by difference equations are more appropriate than the continuous ones when the populations are of non-overlapping generations. The study of the discrete-time models described by difference equations has now been given a great attention, since these models are more reasonable than the continuous time models when populations have non-overlapping generations. Discrete-time models give rise to more efficient computational models for numerical simulations and also show rich dynamics compared to the continuous ones. In recent years, many papers have been published on the mathematical models of biology that discussed the system of difference equations generated from the associated system of differential equations as well as the associated numerical methods. Mathematical models of epidemics have created a major area of research interest during the last few decades. Recently, theory on the effects of parasites on host population dynamics has received much attention and epidemiological models are often used to explain empirical results for host-parasites interaction system. For more details of such biological models, one can see [8-10].

More precisely, our aim is to investigate local asymptotic stability of unique positive equilibrium point, the global asymptotic character of equilibrium point, and the rate of convergence of positive solutions of system (1). For more results for the systems of difference equations, we refer the reader to [11-14].

2 Boundedness and persistence

The following theorem shows that every positive solution <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M9','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M9">View MathML</a> of system (1) is bounded and persists.

Theorem 1Every positive solution<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M10','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M10">View MathML</a>of system (1) is bounded and persists.

Proof Let <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M11','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M11">View MathML</a> be any positive solution of system (1). It is easy to see that <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M12','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M12">View MathML</a> and <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M13','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M13">View MathML</a> for all <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M14','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M14">View MathML</a> . Then, it follows that <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M15','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M15">View MathML</a> and <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M16','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M16">View MathML</a>. Consider the following difference equation

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M17','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M17">View MathML</a>

with initial condition <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M18','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M18">View MathML</a>, then its solution is given by

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M19','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M19">View MathML</a>

where <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M20','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M20">View MathML</a>. Since <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M21','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M21">View MathML</a>, therefore,

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M22','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M22">View MathML</a>

Then, by comparison we have <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M23','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M23">View MathML</a>. Hence,

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M24','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M24">View MathML</a>

and

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M25','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M25">View MathML</a>

for all <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M14','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M14">View MathML</a> . □

Theorem 2Let<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M10','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M10">View MathML</a>be a positive solution of the system (1). Then, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M28','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M28">View MathML</a>is an invariant set for system (1).

Proof Let <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M10','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M10">View MathML</a> be a positive solution of system (1) with initial conditions <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M30','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M30">View MathML</a> and <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M31','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M31">View MathML</a>. Then, from system (1)

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M32','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M32">View MathML</a>

and

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M33','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M33">View MathML</a>

Similarly, we have

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M34','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M34">View MathML</a>

and

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M35','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M35">View MathML</a>

Hence, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M36','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M36">View MathML</a> and <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M37','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M37">View MathML</a>. Suppose that the result is true for <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M38','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M38">View MathML</a>, i.e., <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M39','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M39">View MathML</a> and <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M40','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M40">View MathML</a>. Then from system (1), one can easily obtain

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M41','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M41">View MathML</a>

and

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M42','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M42">View MathML</a>

Hence, the proof is completed. □

3 Linearized stability

Let us consider two-dimensional discrete dynamical system of the form

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M43','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M43">View MathML</a>

(2)

where <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M44','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M44">View MathML</a> and <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M45','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M45">View MathML</a> are continuously differentiable functions and I, J are some intervals of real numbers. Furthermore, a solution <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M46','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M46">View MathML</a> of system (2) is uniquely determined by initial conditions <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M47','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M47">View MathML</a>. An equilibrium point of (2) is a point <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M48','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M48">View MathML</a> that satisfies

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M49','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M49">View MathML</a>

Let <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M48','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M48">View MathML</a> be an equilibrium point of a map <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M51','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M51">View MathML</a>, where f and g are continuously differentiable functions at <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M52','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M52">View MathML</a>. The linearized system of (2) about the equilibrium point <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M53','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M53">View MathML</a> is

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M54','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M54">View MathML</a>

where <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M55','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M55">View MathML</a> and <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M56','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M56">View MathML</a> is Jacobian matrix of system (2) about the equilibrium point <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M53','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M53">View MathML</a>.

Let <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M58','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M58">View MathML</a> be the equilibrium point of system (1), then one has

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M59','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M59">View MathML</a>

Then, it follows that <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M60','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M60">View MathML</a> is the unique positive equilibrium point of system (1). Moreover, the Jacobian matrix <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M61','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M61">View MathML</a> of system (1) about the equilibrium point <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M58','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M58">View MathML</a> is given by

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M63','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M63">View MathML</a>

The characteristic polynomial of <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M61','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M61">View MathML</a> is given by

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M65','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M65">View MathML</a>

(3)

Lemma 1[15]

Consider the second-degree polynomial equation

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M66','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M66">View MathML</a>

(4)

wherepandqare real numbers. Then, the necessary and sufficient condition for both roots of Equation (4) to lie inside the open disk<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M67','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M67">View MathML</a>is

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M68','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M68">View MathML</a>

Lemma 2[16]

Assume that<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M69','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M69">View MathML</a>, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M70','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M70">View MathML</a> , is a system of difference equations and<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M71','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M71">View MathML</a>is the fixed point ofF. If all eigenvalues of the Jacobian matrix<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M72','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M72">View MathML</a>about<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M71','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M71">View MathML</a>lie inside the open unit disk<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M74','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M74">View MathML</a>, then<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M71','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M71">View MathML</a>is locally asymptotically stable. If one of them has a modulus greater than one, then<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M71','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M71">View MathML</a>is unstable.

Theorem 3Assume that<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M77','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M77">View MathML</a>. Then, the unique positive equilibrium point<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M78','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M78">View MathML</a>is locally asymptotically stable.

Proof The characteristic polynomial of <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M61','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M61">View MathML</a> about positive equilibrium point <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M80','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M80">View MathML</a> is given by

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M81','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M81">View MathML</a>

(5)

Let

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M82','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M82">View MathML</a>

Assume that <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M77','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M77">View MathML</a>, and <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M84','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M84">View MathML</a>. Then, one has

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M85','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M85">View MathML</a>

Then, by Rouche’s theorem <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M86','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M86">View MathML</a> and <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M87','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M87">View MathML</a> have the same number of zeroes in an open unit disk <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M67','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M67">View MathML</a>. Hence, both roots

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M89','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M89">View MathML</a>

and

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M90','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M90">View MathML</a>

of (5) lie in an open disk <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M67','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M67">View MathML</a>, and it follows from Lemma 2 that the equilibrium point <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M92','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M92">View MathML</a> is locally asymptotically stable. □

The following theorem shows the necessary and sufficient condition for the local asymptotic stability of a unique positive equilibrium point of system (1).

Theorem 4The unique positive equilibrium point<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M78','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M78">View MathML</a>of system (1) is locally asymptotically stable if and only if<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M94','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M94">View MathML</a>.

Proof Let <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M95','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M95">View MathML</a> and <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M96','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M96">View MathML</a>, then (5) can be written as

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M97','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M97">View MathML</a>

Then, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M98','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M98">View MathML</a> and <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M99','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M99">View MathML</a> if and only if <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M100','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M100">View MathML</a>. Hence, from Lemma 1, the unique positive equilibrium point <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M78','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M78">View MathML</a> of system (1) is locally asymptotically stable if and only if <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M94','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M94">View MathML</a>. □

4 Global character

The following lemma is similar to Theorem 1.16 of [15].

Lemma 3Let<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M103','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M103">View MathML</a>and<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M104','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M104">View MathML</a>be real intervals, and let<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M44','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M44">View MathML</a>and<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M45','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M45">View MathML</a>be continuous functions. Consider system (2) with initial conditions<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M47','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M47">View MathML</a>. Suppose that the following statements are true:

(i) <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M108','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M108">View MathML</a>is non-decreasing in both arguments.

(ii) <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M109','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M109">View MathML</a>is non-increasing inx, and non-decreasing iny.

(iii) If<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M110','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M110">View MathML</a>is a solution of the system

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M111','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M111">View MathML</a>

such that<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M112','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M112">View MathML</a>, and<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M113','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M113">View MathML</a>.

Then, there exists exactly one equilibrium point<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M48','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M48">View MathML</a>of the system (2) such that<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M115','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M115">View MathML</a>.

Theorem 5The unique positive equilibrium point<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M78','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M78">View MathML</a>of system (1) is a global attractor.

Proof Let <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M117','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M117">View MathML</a>, and <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M118','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M118">View MathML</a>. Then, it is easy to see that <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M108','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M108">View MathML</a> is non-decreasing in both x and y. Moreover, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M109','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M109">View MathML</a> is non-increasing in x, and non-decreasing in y. Let <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M121','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M121">View MathML</a> be a solution of the system

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M122','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M122">View MathML</a>

Then, one has

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M123','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M123">View MathML</a>

(6)

and

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M124','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M124">View MathML</a>

(7)

From system (6), one has

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M125','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M125">View MathML</a>

(8)

From (7), one has

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M126','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M126">View MathML</a>

(9)

Furthermore, assuming as in the proof of Theorem 1.16 of [15], it suffices to suppose that

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M127','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M127">View MathML</a>

Using the fact that <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M128','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M128">View MathML</a>, one has from (8) and (9)

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M129','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M129">View MathML</a>

(10)

It follows from (10) that <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M130','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M130">View MathML</a>. Then, (7) implies that

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M131','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M131">View MathML</a>

(11)

Using (6) in (11), we obtain

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M132','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M132">View MathML</a>

Following the same technique as in the proof of Proposition 4.1 of [17], one has <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M133','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M133">View MathML</a>, i.e., <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M134','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M134">View MathML</a>. Thus, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M113','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M113">View MathML</a> and, similarly, one can show that <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M112','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M112">View MathML</a>. Hence, from Lemma 3, the equilibrium point <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M137','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M137">View MathML</a> of system (1) is a global attractor. □

Lemma 4The unique positive equilibrium point<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M138','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M138">View MathML</a>of system (1) is globally asymptotically stable if and only if<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M139','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M139">View MathML</a>.

Proof The proof follows from Theorem 4 and Theorem 5. □

5 Rate of convergence

In this section, we determine the rate of convergence of a solution that converges to the unique positive equilibrium point of system (1). Similar methods can be found in [18] and [19].

The following result gives the rate of convergence of solutions of a system of difference equations

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M140','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M140">View MathML</a>

(12)

where <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M141','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M141">View MathML</a> is an m-dimensional vector, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M142','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M142">View MathML</a> is a constant matrix, and <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M143','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M143">View MathML</a> is a matrix function satisfying

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M144','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M144">View MathML</a>

(13)

as <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M145','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M145">View MathML</a>, where <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M146','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M146">View MathML</a> denotes any matrix norm, which is associated with the vector norm

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M147','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M147">View MathML</a>

Proposition 1 (Perron’s theorem [20])

Suppose that condition (13) holds. If<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M141','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M141">View MathML</a>is a solution of (12), then either<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M149','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M149">View MathML</a>for all largenor

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M150','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M150">View MathML</a>

(14)

exists and is equal to the modulus of one the eigenvalues of matrixA.

Proposition 2[20]

Suppose that condition (13) holds. If<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M141','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M141">View MathML</a>is a solution of (12), then either<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M149','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M149">View MathML</a>for all largenor

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M153','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M153">View MathML</a>

(15)

exists and is equal to the modulus of one the eigenvalues of matrixA.

Let <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M10','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M10">View MathML</a> be any solution of system (1) such that <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M155','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M155">View MathML</a>, and <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M156','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M156">View MathML</a>. To find the error terms, one has from system (1)

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M157','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M157">View MathML</a>

and

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M158','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M158">View MathML</a>

Let <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M159','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M159">View MathML</a>, and let <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M160','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M160">View MathML</a>, then one has

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M161','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M161">View MathML</a>

and

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M162','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M162">View MathML</a>

where

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M163','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M163">View MathML</a>

Moreover,

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M164','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M164">View MathML</a>

Now, the limiting system of error terms can be written as

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M165','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M165">View MathML</a>

which is similar to linearized system of (1) about the equilibrium point <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M166','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M166">View MathML</a>.

Using Proposition 1, one has the following result.

Theorem 6Assume that<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M10','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M10">View MathML</a>is a positive solution of system (1) such that<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M155','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M155">View MathML</a>and<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M156','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M156">View MathML</a>, where<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M58','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M58">View MathML</a>is a unique positive equilibrium point of (1). Then, the error vector<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M171','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M171">View MathML</a>of every solution of (1) satisfies both of the following asymptotic relations

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M172','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M172">View MathML</a>

where<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M173','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M173">View MathML</a>are the characteristic roots of the Jacobian matrix<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M61','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M61">View MathML</a>.

6 Examples

In order to verify our theoretical results and to support our theoretical discussions, we consider several interesting numerical examples in this section. These examples represent different types of qualitative behavior of solutions to the system of nonlinear difference equations (1). All plots in this section are drawn with Mathematica.

Example 1 Let <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M175','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M175">View MathML</a>, and let <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M176','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M176">View MathML</a>. Then, system (1) can be written as

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M177','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M177">View MathML</a>

(16)

with initial conditions <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M178','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M178">View MathML</a>, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M179','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M179">View MathML</a>.

In this case, the unique equilibrium point <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M180','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M180">View MathML</a>. Moreover, in Figure 1, the plot of <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M181','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M181">View MathML</a> is shown in Figure 1(a), the plot of <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M182','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M182">View MathML</a> is shown in Figure 1(b), and an attractor of system (16) is shown in Figure 1(c). The basic reproductive number of system (16) is <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M183','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M183">View MathML</a>.

thumbnailFigure 1. Plots for system (16).

Example 2 Let <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M184','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M184">View MathML</a>, and let <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M185','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M185">View MathML</a>. Then, system (1) can be written as

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M186','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M186">View MathML</a>

(17)

with initial conditions <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M187','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M187">View MathML</a>, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M188','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M188">View MathML</a>.

In this case, the unique equilibrium point <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M189','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M189">View MathML</a>. Moreover, in Figure 2, the plot of <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M181','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M181">View MathML</a> is shown in Figure 2(a), the plot of <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M182','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M182">View MathML</a> is shown in Figure 2(b), and an attractor of system (16) is shown in Figure 2(c). The basic reproductive number of system (17) is <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M192','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M192">View MathML</a>.

thumbnailFigure 2. Plots for system (17).

Example 3 Let <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M193','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M193">View MathML</a>, and let <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M194','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M194">View MathML</a>. Then, system (1) can be written as

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M195','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M195">View MathML</a>

(18)

with initial conditions <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M196','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M196">View MathML</a>, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M197','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M197">View MathML</a>.

In this case, the unique equilibrium point <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M198','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M198">View MathML</a>. Moreover, in Figure 3, the plot of <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M181','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M181">View MathML</a> is shown in Figure 3(a), the plot of <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M182','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M182">View MathML</a> is shown in Figure 3(b), and an attractor of system (18) is shown in Figure 3(c). The basic reproductive number of system (18) is <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M201','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M201">View MathML</a>.

thumbnailFigure 3. Plots for system (18).

Example 4 Let <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M202','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M202">View MathML</a>, and let <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M203','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M203">View MathML</a>. Then, system (1) can be written as

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M204','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M204">View MathML</a>

(19)

with the initial conditions <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M205','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M205">View MathML</a>, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M206','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M206">View MathML</a>.

In this case, the unique equilibrium point <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M207','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M207">View MathML</a>. Moreover, in Figure 4, the plot of <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M181','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M181">View MathML</a> is shown in Figure 4(a), the plot of <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M182','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M182">View MathML</a> is shown in Figure 4(b), and an attractor of the system (19) is shown in Figure 4(c). The basic reproductive number of system (19) is <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M210','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M210">View MathML</a>.

thumbnailFigure 4. Plots for system (19).

Example 5 Let <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M211','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M211">View MathML</a>, and let <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M212','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M212">View MathML</a>. Then, system (1) can be written as

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M213','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M213">View MathML</a>

(20)

with the initial conditions <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M214','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M214">View MathML</a>, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M215','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M215">View MathML</a>.

In this case, the unique equilibrium point <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M216','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M216">View MathML</a>. Moreover, in Figure 5, the plot of <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M181','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M181">View MathML</a> is shown in Figure 5(a), the plot of <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M182','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M182">View MathML</a> is shown in Figure 5(b), and an attractor of system (20) is shown in Figure 5(c). The basic reproductive number of system (20) is <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M219','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M219">View MathML</a>.

thumbnailFigure 5. Plots for system (20).

Conclusion and future work

This work is related to the qualitative behavior of an exponential discrete-time host-pathogen model for spread of an infectious disease with permanent immunity. We proved that system (1) has a unique positive equilibrium point, which is locally asymptotically stable. The main objective of dynamical systems theory is to predict the global behavior of a system based on the knowledge of its present state. An approach to this problem consists of determining the possible global behaviors of the system and determining which initial conditions lead to these long-term behaviors. In the paper, a general result for global character for such type of systems is proved. Due to the simplicity of our SI-type model, we have carried out a systematic local and global stability analysis of it. The most important finding here is that the unique positive equilibrium point can be a global asymptotic attractor for model (1). Moreover, the rate convergence of positive solutions has also been investigated. In such models, there is a threshold parameter that might tell whether a population will increase or die out, or whether an infectious disease will persist or die out within a population. This parameter is commonly known as the basic reproductive number and is denoted by <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M220','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M220">View MathML</a>. In epidemiology, this number <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M220','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M220">View MathML</a> is defined as the number of newly infected individual, produced by a single infected individual in its period of infectivity. In case of system (1), the basic reproductive number is given by <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M222','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M222">View MathML</a>. From our investigations, it is obvious that the unique positive equilibrium point of system (1) is globally asymptotically stable if <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M223','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M223">View MathML</a>, and unstable if <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M224','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M224">View MathML</a>. Some numerical examples are provided to support our theoretical results. These examples are experimental verifications of theoretical discussions. The qualitative behavior of the general model, where there is host mortality at some constant rate, will be our next aim to study.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally and approved the final version of the manuscript.

Acknowledgements

The authors would like to thank the anonymous referees for their valuable comments and suggestions leading to improvement of this paper. This work was supported by the Higher Education Commission of Pakistan.

References

  1. El-Metwally, E, Grove, EA, Ladas, G, Levins, R, Radin, M: On the difference equation <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M225','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M225">View MathML</a>. Nonlinear Anal.. 47, 4623–4634 (2001). Publisher Full Text OpenURL

  2. Papaschinopoulos, G, Radin, MA, Schinas, CJ: On the system of two difference equations of exponential form: <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M227','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M227">View MathML</a>, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M228','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2013/1/263/mathml/M228">View MathML</a>. Math. Comput. Model.. 54, 2969–2977 (2011). Publisher Full Text OpenURL

  3. Papaschinopoulos, G, Schinas, CJ: On the dynamics of two exponential type systems of difference equations. Comput. Math. Appl.. 64(7), 2326–2334 (2012)

  4. Ahmad, S: On the nonautonomous Lotka-Volterra competition equation. Proc. Am. Math. Soc.. 117, 199–204 (1993). Publisher Full Text OpenURL

  5. Tang, X, Zou, X: On positive periodic solutions of Lotka-Volterra competition systems with deviating arguments. Proc. Am. Math. Soc.. 134, 2967–2974 (2006). Publisher Full Text OpenURL

  6. Zhou, Z, Zou, X: Stable periodic solutions in a discrete periodic logistic equation. Appl. Math. Lett.. 16(2), 165–171 (2003). Publisher Full Text OpenURL

  7. Liu, X: A note on the existence of periodic solution in discrete predator-prey models. Appl. Math. Model.. 34, 2477–2483 (2010). Publisher Full Text OpenURL

  8. Allen, LJS: An Introduction to Mathematical Biology, Prentice Hall, New York (2007)

  9. Brauer, F, Castillo-Chavez, C: Mathematical Models in Population Biology and Epidemiology, Springer, Berlin (2000)

  10. Edelstein-Keshet, L: Mathematical Models in Biology, McGraw-Hill, New York (1988)

  11. Kalabuŝić, S, Kulenović, MRS, Pilav, E: Dynamics of a two-dimensional system of rational difference equations of Leslie-Gower type. Adv. Differ. Equ. (2011). BioMed Central Full Text OpenURL

  12. Din, Q: Dynamics of a discrete Lotka-Volterra model. Adv. Differ. Equ.. 2013, (2013) Article ID 95

  13. Din, Q, Donchev, T: Global character of a host-parasite model. Chaos Solitons Fractals. 54, 1–7 (2013)

  14. Din, Q, Qureshi, MN, Khan, AQ: Dynamics of a fourth-order system of rational difference equations. Adv. Differ. Equ.. 2012, (2012) Article ID 215

  15. Grove, EA, Ladas, G: Periodicities in Nonlinear Difference Equations, Chapman & Hall/CRC Press, Boca Raton (2004)

  16. Sedaghat, H: Nonlinear Difference Equations: Theory with Applications to Social Science Models, Kluwer Academic, Dordrecht (2003)

  17. Papaschinopoulos, G, Radin, MA, Schinas, CJ: Study of the asymptotic behavior of the solutions of three systems of difference equations of exponential form. Appl. Math. Comput.. 218, 5310–5318 (2012). Publisher Full Text OpenURL

  18. Kulenović, MRS, Nurkanović, M: Asymptotic behavior of a competitive system of linear fractional difference equations. Adv. Differ. Equ.. 2006, (2006) Article ID 019756

  19. Clark, CA, Kulenović, MRS, Selgrade, JF: On a system of rational difference equations. J. Differ. Equ. Appl.. 11(7), 565–580 (2005). Publisher Full Text OpenURL

  20. Pituk, M: More on Poincare’s and Perron’s theorems for difference equations. J. Differ. Equ. Appl.. 8, 201–216 (2002). Publisher Full Text OpenURL