SpringerOpen Newsletter

Receive periodic news and updates relating to SpringerOpen.

Open Access Research

A unified approach to nonlocal impulsive differential equations with the measure of noncompactness

Shaochun Ji12* and Gang Li1

Author Affiliations

1 School of Mathematical Science, Yangzhou University, Yangzhou, 225002, P.R. China

2 Current address: Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huaian, 223003, P.R. China

For all author emails, please log on.

Advances in Difference Equations 2012, 2012:182  doi:10.1186/1687-1847-2012-182

The electronic version of this article is the complete one and can be found online at: http://www.advancesindifferenceequations.com/content/2012/1/182


Received:3 June 2012
Accepted:9 October 2012
Published:24 October 2012

© 2012 Ji and Li; licensee Springer

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This paper is concerned with the existence of mild solutions to impulsive differential equations with nonlocal conditions. We firstly establish a property of the measure of noncompactness in the space of piecewise continuous functions. Then, by applying this property and Darbo-Sadovskii’s fixed point theorem, we get the existence results of impulsive differential equations in a unified way under compactness conditions, Lipschitz conditions and mixed-type conditions, respectively.

MSC: 34K30, 34G20.

Keywords:
impulsive conditions; nonlocal conditions; Hausdorff measure of noncompactness; fixed point theorem

1 Introduction

In this paper, we discuss the existence of mild solutions for the following impulsive differential equation with nonlocal conditions:

(1.1)

where <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M2','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M2">View MathML</a> is the infinitesimal generator of a strongly continuous semigroup <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M3','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M3">View MathML</a>, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M4','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M4">View MathML</a> in a Banach space X, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M5','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M5">View MathML</a>, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M6','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M6">View MathML</a>, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M7','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M7">View MathML</a>, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M8','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M8">View MathML</a> denote the left and right limit of u at <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M9','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M9">View MathML</a>, respectively. f, g, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M10','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M10">View MathML</a> are appropriate functions to be specified later.

Impulsive differential equations are recognized as excellent models to study the evolution processes that are subject to sudden changes in their states; see the monographs of Lakshmikantham et al.[1], Benchohra et al.[2]. In recent years impulsive differential equations in Banach spaces have been investigated by many authors; see [3-8] and references therein. Liu [9] discussed the existence and uniqueness of mild solutions for a semilinear impulsive Cauchy problem with Lipschitz impulsive functions. Non-Lipschitzian impulsive equations are considered by Nieto et al.[10]. Cardinali and Rubbioni [11] proved the existence of mild solutions for the impulsive Cauchy problem controlled by a semilinear evolution differential inclusion. In [12], Abada et al. studied the existence of integral solutions for some nondensely defined impulsive semilinear functional differential inclusions.

On the other hand, the study of abstract nonlocal initial value problems was initiated by Byszewski, and the importance of the problem consists in the fact that it is more general and has better effect than the classical initial conditions <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M11','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M11">View MathML</a> alone. Therefore, it has been studied extensively under various conditions. Here we mention some results. Byszewski and Lakshmikantham [13], Byszewski [14] obtained the existence and uniqueness of mild solutions and classical solutions in the case that Lipschitz-type conditions are satisfied. In [15], Fu and Ezzinbi studied neutral functional-differential equations with nonlocal conditions. Aizicovici [16], Xue [17,18] discussed the case when A generates a nonlinear contraction semigroup on X and obtained the existence of integral solutions for nonlinear differential equations. In particular, the measure of noncompactness has been used as an important tool to deal with some similar functional differential and integral equations; see [18-22].

From the viewpoint of theory and practice, it is natural for mathematics to combine impulsive conditions and nonlocal conditions. Recently, the nonlocal impulsive differential problem of type (1.1) has been discussed in the papers of Liang et al.[23] and Fan et al.[24,25], where a semigroup <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M3','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M3">View MathML</a> is supposed to be compact, and g is Lipschitz continuous, compact, and strongly continuous, respectively. Very recently, Zhu et al.[26] obtain the existence results when a nonlocal item g is Lipschitz continuous by using the Hausdorff measure of noncompactness and operator transformation. Compared with the results in [23-25], in this paper we do not require the compactness of the semigroup <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M3','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M3">View MathML</a> and Lipschitz continuity of f. More important, by using the property of the measure of noncompactness in <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M14','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M14">View MathML</a> given by us (see Lemma 2.7), the impulsive conditions and nonlocal conditions can be considered in a unified way under various conditions, including compactness conditions, Lipschitz conditions and mixed-type conditions. Hence, our results generalize and partially improve the results in [23,25,26].

This paper is organized as follows. In Section 2, we present some concepts and facts about the strongly continuous semigroup and the measure of noncompactness. In Section 3, we give four existence theorems of the problem (1.1) by using a condensing operator and the measure of noncompactness. At last, an example of an impulsive partial differential system is given in Section 4.

2 Preliminaries

Let <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M15','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M15">View MathML</a> be a real Banach space. We denote by <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M16','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M16">View MathML</a> the space of X-valued continuous functions on <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M17','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M17">View MathML</a> with the norm <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M18','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M18">View MathML</a> and by <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M19','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M19">View MathML</a> the space of X-valued Bochner integrable functions on <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M17','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M17">View MathML</a> with the norm <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M21','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M21">View MathML</a>.

The semigroup <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M3','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M3">View MathML</a> is said to be equicontinuous if <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M23','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M23">View MathML</a> is equicontinuous at <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M24','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M24">View MathML</a> for any bounded subset <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M25','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M25">View MathML</a> (cf.[27]). Obviously, if <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M3','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M3">View MathML</a> is a compact semigroup, it must be equicontinuous. And the converse of the relation usually is not correct. Throughout this paper, we suppose that

(HA) The semigroup <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M27','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M27">View MathML</a> generated by A is equicontinuous. Moreover, there exists a positive number M such that <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M28','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M28">View MathML</a>.

For the sake of simplicity, we put <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M29','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M29">View MathML</a>; <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M30','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M30">View MathML</a>; <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M31','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M31">View MathML</a>, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M32','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M32">View MathML</a>. In order to define a mild solution of the problem (1.1), we introduce the set <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M33','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M33">View MathML</a>. It is easy to verify that <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M14','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M14">View MathML</a> is a Banach space with the norm <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M35','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M35">View MathML</a>.

Definition 2.1 A function <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M36','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M36">View MathML</a> is a mild solution of the problem (1.1) if

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M37','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M37">View MathML</a>

for all <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M38','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M38">View MathML</a>.

Now, we introduce the Hausdorff measure of noncompactness (in short MNC) <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M39','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M39">View MathML</a> defined by

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M40','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M40">View MathML</a>

for each bounded subset B in a Banach space X. We recall the following properties of the Hausdorff measure of noncompactness β.

Lemma 2.2 ([28])

LetXbe a real Banach space and<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M41','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M41">View MathML</a>be bounded. Then the following properties are satisfied:

(1) Bis relatively compact if and only if<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M42','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M42">View MathML</a>;

(2) <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M43','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M43">View MathML</a>, where<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M44','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M44">View MathML</a>and convBmean the closure and convex hull ofB, respectively;

(3) <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M45','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M45">View MathML</a>when<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M46','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M46">View MathML</a>;

(4) <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M47','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M47">View MathML</a>, where<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M48','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M48">View MathML</a>;

(5) <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M49','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M49">View MathML</a>;

(6) <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M50','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M50">View MathML</a>for any<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M51','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M51">View MathML</a>;

(7) If the map<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M52','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M52">View MathML</a>is Lipschitz continuous with a constantk, then<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M53','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M53">View MathML</a>for any bounded subset<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M54','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M54">View MathML</a>, whereZis a Banach space.

The map <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M55','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M55">View MathML</a> is said to be β-condensing if Q is continuous and bounded, and for any nonprecompact bounded subset <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M56','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M56">View MathML</a>, we have <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M57','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M57">View MathML</a>, where X is a Banach space.

Lemma 2.3 (See [28], Darbo-Sadovskii)

If<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M58','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M58">View MathML</a>is bounded, closed, and convex, the continuous map<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M59','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M59">View MathML</a>isβ-condensing, thenQhas at least one fixed point inD.

In order to remove the strong restriction on the coefficient in Darbo-Sadovskii’s fixed point theorem, Sun and Zhang [29] generalized the definition of a β-condensing operator. At first, we give some notation. Let <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M60','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M60">View MathML</a> be closed and convex, the map <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M61','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M61">View MathML</a> and <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M62','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M62">View MathML</a>. For every <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M56','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M56">View MathML</a>, set

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M64','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M64">View MathML</a>

where <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M65','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M65">View MathML</a> means the closure of convex hull, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M66','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M66">View MathML</a> .

Definition 2.4 Let <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M60','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M60">View MathML</a> be closed and convex. The map <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M61','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M61">View MathML</a> is said to be β-convex-power condensing if Q is continuous, bounded and there exist <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M62','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M62">View MathML</a>, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M70','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M70">View MathML</a> such that for every nonprecompact bounded subset <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M71','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M71">View MathML</a>, we have

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M72','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M72">View MathML</a>

Obviously, if <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M73','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M73">View MathML</a>, then a β-convex-power condensing operator is β-condensing. Thus, the convex-power condensing operator is a generalization of the condensing operator. Now, we give the fixed point theorem about the convex-power condensing operator.

Lemma 2.5 ([29])

If<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M58','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M58">View MathML</a>is bounded, closed, and convex, the continuous map<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M59','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M59">View MathML</a>isβ-convex-power condensing, thenQhas at least one fixed point inD.

Now, we give an important property of the Hausdorff MNC in <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M14','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M14">View MathML</a>, which is an extension to the property of MNC in <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M16','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M16">View MathML</a> and makes us deal with the impulsive differential equations from a unified perspective.

Lemma 2.6 ([28])

If<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M78','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M78">View MathML</a>is bounded, then<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M79','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M79">View MathML</a>for all<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M38','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M38">View MathML</a>, where<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M81','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M81">View MathML</a>. Furthermore, ifWis equicontinuous on<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M17','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M17">View MathML</a>, then<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M83','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M83">View MathML</a>is continuous on<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M17','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M17">View MathML</a>and<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M85','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M85">View MathML</a>.

By applying Lemma 2.6, we shall extend the result to the space <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M14','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M14">View MathML</a>.

Lemma 2.7If<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M87','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M87">View MathML</a>is bounded, then<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M79','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M79">View MathML</a>for all<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M38','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M38">View MathML</a>, where<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M81','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M81">View MathML</a>. Furthermore, suppose the following conditions are satisfied:

(1) Wis equicontinuous on<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M30','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M30">View MathML</a>and each<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M31','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M31">View MathML</a>, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M32','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M32">View MathML</a>;

(2) Wis equicontinuous at<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M94','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M94">View MathML</a>, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M32','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M32">View MathML</a>.

Then<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M96','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M96">View MathML</a>.

Proof For arbitrary <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M97','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M97">View MathML</a>, there exists <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M98','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M98">View MathML</a>, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M99','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M99">View MathML</a>, such that <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M100','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M100">View MathML</a> and

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M101','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M101">View MathML</a>

where <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M102','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M102">View MathML</a> denotes the diameter of a bounded set. Now, we have <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M103','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M103">View MathML</a> for each <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M104','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M104">View MathML</a>, and

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M105','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M105">View MathML</a>

for <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M106','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M106">View MathML</a>. From the above two inequalities, it follows that

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M107','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M107">View MathML</a>

By the arbitrariness of ε, we get that <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M108','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M108">View MathML</a> for every <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M38','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M38">View MathML</a>. Therefore, we have <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M110','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M110">View MathML</a>.

Next, if the conditions (1) and (2) are satisfied, it remains to prove that <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M111','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M111">View MathML</a>. We denote <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M112','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M112">View MathML</a> by the restriction of W on <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M113','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M113">View MathML</a>, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M114','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M114">View MathML</a>. That is, for <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M115','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M115">View MathML</a>, define that

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M116','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M116">View MathML</a>

and obviously <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M112','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M112">View MathML</a> is equicontinuous on <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M118','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M118">View MathML</a> due to the conditions (1) and (2). Then from Lemma 2.6, we have that

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M119','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M119">View MathML</a>

Moreover, we define the map

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M120','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M120">View MathML</a>

by <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M121','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M121">View MathML</a>, where <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M122','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M122">View MathML</a>, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M123','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M123">View MathML</a>, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M124','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M124">View MathML</a>. As Λ is an isometric mapping, noticing the equicontinuity of <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M125','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M125">View MathML</a> on <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M118','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M118">View MathML</a>, we have that

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M127','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M127">View MathML</a>

And from the fact that <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M128','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M128">View MathML</a>, for each <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M129','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M129">View MathML</a>, we get that <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M111','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M111">View MathML</a>. This completes the proof. □

Lemma 2.8 ([28])

If<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M131','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M131">View MathML</a>is bounded and equicontinuous, then<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M83','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M83">View MathML</a>is continuous and

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M133','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M133">View MathML</a>

for all<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M38','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M38">View MathML</a>, where<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M135','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M135">View MathML</a>.

Lemma 2.9If the hypothesis (HA) is satisfied, i.e., <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M136','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M136">View MathML</a>is equicontinuous, and<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M137','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M137">View MathML</a>, then the set<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M138','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M138">View MathML</a>is equicontinuous for<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M38','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M38">View MathML</a>.

Proof We let <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M140','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M140">View MathML</a> and have that

(2.1)

If <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M142','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M142">View MathML</a>, then the right-hand side of (2.1) can be made small when h is small independent of u. If <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M24','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M24">View MathML</a>, then we can find a small <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M97','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M97">View MathML</a> with <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M145','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M145">View MathML</a>. Then it follows from (2.1) that

(2.2)

Here, as <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M3','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M3">View MathML</a> is equicontinuous for <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M24','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M24">View MathML</a>, thus

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M149','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M149">View MathML</a>

uniformly for u.

Then from (2.1), (2.2) and the absolute continuity of integrals, we get that <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M150','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M150">View MathML</a> is equicontinuous for <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M151','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M151">View MathML</a>. □

3 Main results

In this section we give the existence results for the problem (1.1) under different conditions on g and <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M10','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M10">View MathML</a> when the semigroup is not compact and f is not compact or Lipschitz continuous, by using Lemma 2.7 and the generalized β-condensing operator. More precisely, Theorem 3.1 is concerned with the case that compactness conditions are satisfied. Theorem 3.4 deals with the case that Lipschitz conditions are satisfied. And mixed-type conditions are considered in Theorem 3.5 and Theorem 3.6.

Let r be a finite positive constant, and set <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M153','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M153">View MathML</a>, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M154','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M154">View MathML</a>. We define the solution map <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M155','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M155">View MathML</a> by

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M156','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M156">View MathML</a>

(3.1)

with

for all <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M38','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M38">View MathML</a>. It is easy to see that u is the mild solution of the problem (1.1) if and only if u is a fixed point of the map G.

We list the following hypotheses:

(Hf) <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M159','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M159">View MathML</a> satisfies the following conditions:

(i) <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M160','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M160">View MathML</a> is continuous for a.e. <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M151','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M151">View MathML</a> and <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M162','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M162">View MathML</a> is measurable for all <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M163','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M163">View MathML</a>. Moreover, for any <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M164','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M164">View MathML</a>, there exists a function <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M165','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M165">View MathML</a> such that

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M166','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M166">View MathML</a>

for a.e. <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M38','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M38">View MathML</a> and <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M168','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M168">View MathML</a>.

(ii) there exists a constant <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M169','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M169">View MathML</a> such that for any bounded set <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M60','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M60">View MathML</a>,

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M171','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M171">View MathML</a>

(3.2)

for a.e. <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M38','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M38">View MathML</a>.

(Hg1) <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M173','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M173">View MathML</a> is continuous and compact.

(HI1) <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M174','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M174">View MathML</a> is continuous and compact for <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M32','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M32">View MathML</a>.

Theorem 3.1Assume that the hypotheses (HA), (Hf), (Hg1), (HI1) are satisfied, then the nonlocal impulsive problem (1.1) has at least one mild solution on<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M17','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M17">View MathML</a>provided that there exists a constant<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M164','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M164">View MathML</a>such that

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M178','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M178">View MathML</a>

(3.3)

Proof We will prove that the solution map G has a fixed point by using the fixed point theorem about the β-convex-power condensing operator.

Firstly, we prove that the map G is continuous on <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M14','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M14">View MathML</a>. For this purpose, let <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M180','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M180">View MathML</a> be a sequence in <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M14','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M14">View MathML</a> with <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M182','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M182">View MathML</a> in <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M14','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M14">View MathML</a>. By the continuity of f with respect to the second argument, we deduce that for each <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M184','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M184">View MathML</a>, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M185','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M185">View MathML</a> converges to <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M186','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M186">View MathML</a> in X. And we have

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M187','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M187">View MathML</a>

Then by the continuity of g, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M10','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M10">View MathML</a> and using the dominated convergence theorem, we get <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M189','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M189">View MathML</a> in <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M14','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M14">View MathML</a>.

Secondly, we claim that <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M191','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M191">View MathML</a>. In fact, for any <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M192','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M192">View MathML</a>, from (3.1) and (3.3), we have

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M193','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M193">View MathML</a>

for each <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M38','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M38">View MathML</a>. It implies that <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M195','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M195">View MathML</a>.

Now, we show that <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M196','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M196">View MathML</a> is equicontinuous on <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M30','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M30">View MathML</a>, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M31','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M31">View MathML</a> and is also equicontinuous at <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M94','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M94">View MathML</a>, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M32','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M32">View MathML</a>. Indeed, we only need to prove that <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M196','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M196">View MathML</a> is equicontinuous on <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M202','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M202">View MathML</a>, as the cases for other subintervals are the same. For <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M203','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M203">View MathML</a>, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M204','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M204">View MathML</a>, we have, using the semigroup property,

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M205','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M205">View MathML</a>

Thus, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M206','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M206">View MathML</a> is equicontinuous on <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M207','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M207">View MathML</a> due to the compactness of g and the strong continuity of <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M208','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M208">View MathML</a>. The same idea can be used to prove the equicontinuity of <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M209','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M209">View MathML</a> on <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M202','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M202">View MathML</a>. That is, for <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M203','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M203">View MathML</a>, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M204','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M204">View MathML</a>, we have

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M213','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M213">View MathML</a>

which implies the equicontinuity of <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M214','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M214">View MathML</a> on <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M202','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M202">View MathML</a> due to the compactness of <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M216','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M216">View MathML</a> and the strong continuity of <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M208','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M208">View MathML</a>. Moreover, from Lemma 2.9, we have that <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M218','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M218">View MathML</a> is equicontinuous on <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M17','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M17">View MathML</a>. Therefore, we have that the functions in <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M220','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M220">View MathML</a> are equicontinuous on each <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M221','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M221">View MathML</a>, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M222','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M222">View MathML</a>.

Set <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M223','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M223">View MathML</a>, where <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M65','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M65">View MathML</a> means the closure of convex hull. It is easy to verify that G maps W into itself and W is equicontiuous on each <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M113','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M113">View MathML</a>, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M222','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M222">View MathML</a>. Now, we show that <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M227','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M227">View MathML</a> is a convex-power condensing operator. Take <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M228','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M228">View MathML</a>, we shall prove that there exists a positive integral <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M229','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M229">View MathML</a> such that

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M230','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M230">View MathML</a>

for every nonprecompact bounded subset <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M231','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M231">View MathML</a>.

From Lemma 2.2 and Lemma 2.8, noticing the compactness of g and <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M10','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M10">View MathML</a>, we have

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M233','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M233">View MathML</a>

for <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M38','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M38">View MathML</a>. Further,

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M235','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M235">View MathML</a>

for <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M38','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M38">View MathML</a>. We can continue this iterative procedure and get that

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M237','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M237">View MathML</a>

for <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M38','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M38">View MathML</a>. As <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M239','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M239">View MathML</a> is equicontinuous on each <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M221','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M221">View MathML</a>, by Lemma 2.7, we have that

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M241','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M241">View MathML</a>

By the fact that <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M242','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M242">View MathML</a> as <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M243','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M243">View MathML</a>, we know that there exists a large enough positive integral <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M229','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M229">View MathML</a> such that

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M245','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M245">View MathML</a>

which implies that <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M246','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M246">View MathML</a> is a convex-power condensing operator. From Lemma 2.5, G has at least one fixed point in W, which is just a mild solution of the nonlocal impulsive problem (1.1). This completes the proof of Theorem 3.1. □

Remark 3.2 By using the method of the measure of noncompactness, we require f to satisfy some proper conditions of MNC, but do not require the compactness of a semigroup <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M3','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M3">View MathML</a>. Note that if f is compact or Lipschitz continuous, then the condition (Hf)(ii) is satisfied. And our work improves many previous results, where they need the compactness of <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M3','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M3">View MathML</a> or f, or the Lipschitz continuity of f. In the proof, Lemma 2.7 plays an important role for the impulsive differential equations, which provides us with the way to calculate the measure of noncompactness in <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M14','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M14">View MathML</a>. The use of noncompact measures in functional differential and integral equations can also be seen in [18-20,22].

Remark 3.3 When we apply Darbo-Sadovskii’s fixed point theorem to get the fixed point of a map, a strong inequality is needed to guarantee its condensing property. By using the β-convex-power condensing operator developed by Sun et al.[29], we do not impose any restrictions on the coefficient L. This generalized condensing operator also can be seen in Liu et al.[30], where nonlinear Volterra integral equations are discussed.

In the following, by using Lemma 2.7 and Darbo-Sadovskii’s fixed point theorem, we give the existence results of the problem (1.1) under Lipschitz conditions and mixed-type conditions, respectively.

We give the following hypotheses:

(Hg2) <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M173','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M173">View MathML</a> is Lipschitz continuous with the Lipschitz constant k.

(HI2) <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M251','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M251">View MathML</a> is Lipschitz continuous with the Lipschitz constant <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M252','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M252">View MathML</a>; that is,

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M253','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M253">View MathML</a>

for <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M254','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M254">View MathML</a>, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M32','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M32">View MathML</a>.

Theorem 3.4Assume that the hypotheses (HA), (Hf), (Hg2), (HI2) are satisfied, then the nonlocal impulsive problem (1.1) has at least one mild solution on<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M17','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M17">View MathML</a>provided that

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M257','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M257">View MathML</a>

(3.4)

and (3.3) are satisfied.

Proof From the proof of Theorem 3.1, we have that the solution operator G is continuous and maps <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M258','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M258">View MathML</a> into itself. It remains to show that G is β-condensing in <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M258','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M258">View MathML</a>.

By the conditions (Hg2) and (HI2), we get that <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M260','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M260">View MathML</a> is Lipschitz continuous with the Lipschitz constant <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M261','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M261">View MathML</a>. In fact, for <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M262','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M262">View MathML</a>, we have

Thus, from Lemma 2.2(7), we obtain that

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M264','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M264">View MathML</a>

(3.5)

For the operator <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M265','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M265">View MathML</a>, from Lemma 2.6, Lemma 2.8 and Lemma 2.9, we have

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M266','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M266">View MathML</a>

(3.6)

Combining (3.5) and (3.6), we have

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M267','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M267">View MathML</a>

From the condition (3.4), <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M268','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M268">View MathML</a>, the solution map G is β-condensing in <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M258','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M258">View MathML</a>. By Darbo-Sadovskii’s fixed point theorem, G has a fixed point in <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M258','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M258">View MathML</a>, which is just a mild solution of the nonlocal impulsive problem (1.1). This completes the proof of Theorem 3.4. □

Among the previous works on nonlocal impulsive differential equations, few are concerned with the mixed-type conditions. Here, by using Lemma 2.7, we can also deal with the mixed-type conditions in a similar way.

Theorem 3.5Assume that the hypotheses (HA), (Hf), (Hg1), (HI2) are satisfied, then the nonlocal impulsive problem (1.1) has at least one mild solution on<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M17','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M17">View MathML</a>provided that

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M272','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M272">View MathML</a>

(3.7)

and (3.3) are satisfied.

Proof We will also use Darbo-Sadovskii’s fixed point theorem to obtain a fixed point of the solution operator G. From the proof of Theorem 3.1, we have that G is continuous and maps <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M258','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M258">View MathML</a> into itself.

Subsequently, we show that G is β-condensing in <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M258','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M258">View MathML</a>. From the compactness of g and the strong continuity of <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M208','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M208">View MathML</a>, we get that <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M276','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M276">View MathML</a> is equicontinuous on <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M17','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M17">View MathML</a>. Then by Lemma 2.6, we have that

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M278','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M278">View MathML</a>

(3.8)

On the other hand, for <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M262','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M262">View MathML</a>, we have

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M280','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M280">View MathML</a>

Then by Lemma 2.2(7), we obtain that

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M281','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M281">View MathML</a>

(3.9)

Combining (3.6), (3.8) and (3.9), we get that

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M282','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M282">View MathML</a>

From the condition (3.7), the map G is β-condensing in <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M258','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M258">View MathML</a>. So, G has a fixed point in <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M258','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M258">View MathML</a> due to Darbo-Sadovskii’s fixed point theorem, which is just a mild solution of the nonlocal impulsive problem (1.1). This completes the proof of Theorem 3.5. □

Theorem 3.6Assume that the hypotheses (HA), (Hf), (Hg2), (HI1) are satisfied, then the nonlocal impulsive problem (1.1) has at least one mild solution on<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M17','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M17">View MathML</a>provided that

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M286','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M286">View MathML</a>

(3.10)

and (3.3) are satisfied.

Proof From the proof of Theorem 3.1, we have that the solution operator G is continuous and maps <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M258','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M258">View MathML</a> into itself. In the following, we shall show that G is β-condensing in <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M258','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M258">View MathML</a>.

By the Lipschitz continuity of g, we have that for <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M289','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M289">View MathML</a>,

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M290','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M290">View MathML</a>

which implies that

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M291','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M291">View MathML</a>

(3.11)

Similar to the discussion in Theorem 3.1, from the compactness of <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M10','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M10">View MathML</a> and the strong continuity <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M208','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M208">View MathML</a>, we get that <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M214','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M214">View MathML</a> is equicontinuous on each <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M113','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M113">View MathML</a>, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M222','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M222">View MathML</a>. Then by Lemma 2.7, we have that

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M297','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M297">View MathML</a>

(3.12)

Combining (3.6), (3.11) and (3.12), we have that

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M298','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M298">View MathML</a>

From condition (3.10), the map G is β-condensing in <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M258','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M258">View MathML</a>. So, G has a fixed point in <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M258','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M258">View MathML</a> due to Darbo-Sadovskii’s fixed point theorem, which is just a mild solution of the nonlocal impulsive problem (1.1). This completes the proof of Theorem 3.6. □

Remark 3.7 With the assumption of compactness on the associated semigroup, the existence of mild solutions to functional differential equations has been discussed in [6,23-25]. By using the method of the measure of noncompactness, we deal with the four cases of impulsive differential equations in a unified way and get the existence results when the semigroup in not compact.

4 An example

In the application to partial differential equations, such as a class of parabolic equations, the semigroup corresponding to the differential equations is an analytic semigroup. We know that an analytic semigroup or a compact semigroup must be equicontinuous; see Pazy [31]. So, our results can be applied to these problems. If the operator <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M301','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M301">View MathML</a>, the corresponding semigroup <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M302','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M302">View MathML</a> is equicontinuous on <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M17','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M17">View MathML</a>.

We consider the following partial differential system (based on [23]) to illustrate our abstract results:

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M304','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M304">View MathML</a>

Take <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M305','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M305">View MathML</a> and the operator <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M306','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M306">View MathML</a> defined by <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M307','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M307">View MathML</a>, with

<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M308','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M308">View MathML</a>

From Pazy [31], we know that A is the infinitesimal generator of an analytic semigroup <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M3','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M3">View MathML</a>, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M4','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M4">View MathML</a>. This implies that A satisfies the condition (HA).

Let <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M311','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M311">View MathML</a>, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M312','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M312">View MathML</a>, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M313','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M313">View MathML</a> (<a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M314','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M314">View MathML</a>), <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M315','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M315">View MathML</a>, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M316','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M316">View MathML</a> and <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M317','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M317">View MathML</a> for <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M32','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M32">View MathML</a>. Now, we define that

(1) <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M319','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M319">View MathML</a>, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M38','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M38">View MathML</a>, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M321','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M321">View MathML</a>.

(2) <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M322','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M322">View MathML</a>, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M323','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M323">View MathML</a>.

(3) <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M324','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M324">View MathML</a>, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M323','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M323">View MathML</a>.

(4) <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M326','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M326">View MathML</a>, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M321','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M321">View MathML</a>, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M328','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M328">View MathML</a>.

(5) <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M329','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M329">View MathML</a>, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M321','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M321">View MathML</a>, <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M328','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M328">View MathML</a>.

Then we obtain that

Case 1. Under the conditions (1) + (3) + (5), the assumptions in Theorem 3.1 are satisfied for large <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M164','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M164">View MathML</a>. Therefore, the corresponding system (1.1) has at least a mild solution.

Case 2. Under the conditions (1) + (2) + (4), the assumptions in Theorem 3.4 are satisfied for large <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M164','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M164">View MathML</a>. Therefore, the corresponding system (1.1) has at least a mild solution.

Case 3. Under the conditions (1) + (3) + (4), the assumptions in Theorem 3.5 are satisfied for large <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M164','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M164">View MathML</a>. Therefore, the corresponding system (1.1) has at least a mild solution.

Case 4. Under the conditions (1) + (2) + (5), the assumptions in Theorem 3.6 are satisfied for large <a onClick="popup('http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M164','MathML',630,470);return false;" target="_blank" href="http://www.advancesindifferenceequations.com/content/2012/1/182/mathml/M164">View MathML</a>. Therefore, the corresponding system (1.1) has at least a mild solution.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors read and approved the final manuscript.

Acknowledgements

Research is partially supported by the National Natural Science Foundation of China (11271316), the Postgraduate Innovation Project of Jiangsu Province (No. CXZZ12-0890), the NSF of China (11101353), the first author is also supported by the Youth Teachers Foundation of Huaiyin Institute of Technology (2012).

References

  1. Lakshmikantham, V, Bainov, DD, Simeonov, PS: Theory of Impulsive Differential Equations, World Scientific, Singapore (1989)

  2. Benchohra, M, Henderson, J, Ntouyas, SK: Impulsive Differential Equations and Inclusions, Hindawi Publishing, New York (2006)

  3. Guo, M, Xue, X, Li, R: Controllability of impulsive evolution inclusions with nonlocal conditions. J. Optim. Theory Appl.. 120, 355–374 (2004)

  4. Hernández, E, Rabelo, M, Henríquez, HR: Existence of solutions for impulsive partial neutral functional differential equations. J. Math. Anal. Appl.. 331, 1135–1158 (2007). Publisher Full Text OpenURL

  5. Ji, S, Wen, S: Nonlocal Cauchy problem for impulsive differential equations in Banach spaces. Int. J. Nonlinear Sci.. 10(1), 88–95 (2010)

  6. Ji, S, Li, G: Existence results for impulsive differential inclusions with nonlocal conditions. Comput. Math. Appl.. 62, 1908–1915 (2011). Publisher Full Text OpenURL

  7. Li, J, Nieto, JJ, Shen, J: Impulsive periodic boundary value problems of first-order differential equations. J. Math. Anal. Appl.. 325, 226–236 (2007). Publisher Full Text OpenURL

  8. Benchohra, M, Henderson, J, Ntouyas, SK: An existence result for first-order impulsive functional differential equations in Banach spaces. Comput. Math. Appl.. 42, 1303–1310 (2001). Publisher Full Text OpenURL

  9. Liu, JH: Nonlinear impulsive evolution equations. Dyn. Contin. Discrete Impuls. Syst.. 6, 77–85 (1999)

  10. Nieto, JJ, Rodriguez-Lopez, R: Periodic boundary value problem for non-Lipschitzian impulsive functional differential equations. J. Math. Anal. Appl.. 318, 593–610 (2006). Publisher Full Text OpenURL

  11. Cardinali, T, Rubbioni, P: Impulsive semilinear differential inclusion: topological structure of the solution set and solutions on non-compact domains. Nonlinear Anal.. 14, 73–84 (2008)

  12. Abada, N, Benchohra, M, Hammouche, H: Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions. J. Differ. Equ.. 246, 3834–3863 (2009). Publisher Full Text OpenURL

  13. Byszewski, L, Lakshmikantham, V: Theorem about the existence and uniqueness of solutions of a nonlocal Cauchy problem in a Banach space. Appl. Anal.. 40, 11–19 (1990)

  14. Byszewski, L: Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl.. 162, 494–505 (1991). Publisher Full Text OpenURL

  15. Fu, X, Ezzinbi, K: Existence of solutions for neutral functional differential evolution equations with nonlocal conditions. Nonlinear Anal.. 54, 215–227 (2003). Publisher Full Text OpenURL

  16. Aizicovici, S, McKibben, M: Existence results for a class of abstract nonlocal Cauchy problems. Nonlinear Anal.. 39, 649–668 (2000). Publisher Full Text OpenURL

  17. Xue, X: Nonlinear differential equations with nonlocal conditions in Banach spaces. Nonlinear Anal.. 63, 575–586 (2005). Publisher Full Text OpenURL

  18. Xue, X: Nonlocal nonlinear differential equations with a measure of noncompactness in Banach spaces. Nonlinear Anal.. 70, 2593–2601 (2009). Publisher Full Text OpenURL

  19. Banas, J, Zajac, T: A new approach to the theory of functional integral equations of fractional order. J. Math. Anal. Appl.. 375, 375–387 (2011). Publisher Full Text OpenURL

  20. Cardinali, T, Rubbioni, P: On the existence of mild solutions of semilinear evolution differential inclusions. J. Math. Anal. Appl.. 308, 620–635 (2005). Publisher Full Text OpenURL

  21. Dong, Q, Li, G: Existence of solutions for semilinear differential equations with nonlocal conditions in Banach spaces. Electron. J. Qual. Theory Differ. Equ.. 2009, (2009) Article ID 47

  22. Agarwal, RP, Benchohra, M, Seba, D: On the application of measure of noncompactness to the existence of solutions for fractional differential equations. Results Math.. 55, 221–230 (2009). Publisher Full Text OpenURL

  23. Liang, J, Liu, JH, Xiao, TJ: Nonlocal impulsive problems for nonlinear differential equations in Banach spaces. Math. Comput. Model.. 49, 798–804 (2009). Publisher Full Text OpenURL

  24. Fan, Z: Impulsive problems for semilinear differential equations with nonlocal conditions. Nonlinear Anal.. 72, 1104–1109 (2010). Publisher Full Text OpenURL

  25. Fan, Z, Li, G: Existence results for semilinear differential equations with nonlocal and impulsive conditions. J. Funct. Anal.. 258, 1709–1727 (2010). Publisher Full Text OpenURL

  26. Zhu, L, Dong, Q, Li, G: Impulsive differential equations with nonlocal conditions in general Banach spaces. Adv. Differ. Equ.. 2012, (2012) Article ID 10

  27. Barbu, V: Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden (1976)

  28. Banas, J, Goebel, K: Measure of Noncompactness in Banach Spaces, Dekker, New York (1980)

  29. Sun, J, Zhang, X: The fixed point theorem of convex-power condensing operator and applications to abstract semilinear evolution equations. Acta Math. Sin. Chin. Ser.. 48, 439–446 (2005)

  30. Liu, LS, Guo, F, Wu, CX, Wu, YH: Existence theorems of global solutions for nonlinear Volterra type integral equations in Banach spaces. J. Math. Anal. Appl.. 309, 638–649 (2005). Publisher Full Text OpenURL

  31. Pazy, A: Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York (1983)